k8s笔记——Prometheus 中的Histogram指标
定义:Histogram是一种度量类型,用于表示数据的分布情况。它通过一系列预设的桶(buckets)来收集观察值,并计算每个桶中的观察值数量。目的:主要用于分析和监控数据的分布情况,如响应时间、请求大小等。Prometheus中的Histogram是一种强大的度量类型,用于表示数据的分布情况。通过预设的桶来收集观察值,并计算每个桶中的数量,同时提供总和和总数的附加信息。虽然百分位数的估算可能存在
·
Histogram(直方图)是Prometheus中一种非常重要的度量类型,用于表示一段时间范围内数据的分布情况。以下是对Prometheus中Histogram的详细解释:
一、定义与基本概念
- 定义:Histogram是一种度量类型,用于表示数据的分布情况。它通过一系列预设的桶(buckets)来收集观察值,并计算每个桶中的观察值数量。
- 目的:主要用于分析和监控数据的分布情况,如响应时间、请求大小等。
二、工作机制
-
桶的划分:
- Histogram通过预设的桶来收集数据。桶的划分是用户定义的,可以根据监控数据的特性和需求进行设置。
- 例如,对于响应时间,可以设置桶为[0.005, 0.01, 0.025, 0.05, 0.1, 0.25, 0.5, 1, 2.5, 5, 10]秒,以捕获不同范围的响应时间。
-
数据收集:
- 当监控目标产生数据时,Prometheus客户端会将数据分配到相应的桶中。
- 每个桶记录的是落入该桶范围内的观察值数量。
-
附加信息:
- 除了桶中的观察值数量外,Histogram还会记录所有观察值的总和(sum)和观察值的总数(count)。
三、查询与分析
-
直接查询:
- 可以通过PromQL(Prometheus Query Language)直接查询Histogram的桶数据、总和和总数。
- 例如,查询某个Histogram的桶数据:
histogram_quantile(0.95, http_request_duration_seconds_bucket)
,这里0.95
表示查询95百分位数。
-
百分位数估算:
- Prometheus提供了
histogram_quantile
函数,用于估算给定百分位数的值。 - 由于Histogram在客户端只进行简单的分桶和分桶计数,因此在服务端估算百分位数时可能存在一定误差。
- Prometheus提供了
四、优点与局限性
-
优点:
- 能够直观地展示数据的分布情况。
- 适用于分析和监控数据范围较大的度量指标。
-
局限性:
- 百分位数的估算可能存在误差,尤其是在桶的划分不够精细时。
- 对于需要精确百分位数计算的场景,可能需要结合其他度量类型(如Summary)进行使用。
五、总结
Prometheus中的Histogram是一种强大的度量类型,用于表示数据的分布情况。通过预设的桶来收集观察值,并计算每个桶中的数量,同时提供总和和总数的附加信息。虽然百分位数的估算可能存在一定误差,但Histogram仍然是分析和监控数据分布的重要工具。在实际应用中,需要根据监控数据的特性和需求来合理设置桶的划分,并结合其他度量类型进行使用。
更多推荐
已为社区贡献7条内容
所有评论(0)