Apache Airflow容器化部署
Apache Airflow标准软件基于Bitnami airflow-scheduler 构建。
Apache Airflow标准软件基于Bitnami airflow-scheduler 构建。当前版本为2.4.58
你可以通过轻云UC部署工具直接安装部署,也可以手动按如下文档操作,该项目已经全面开源,可以从如下环境获取 配置文件地址: qingcloud-platform: 一站式、开箱即用、可扩展的组件化软件工厂!高效易用 低代码 组件化 软件开发设计器。助力中小微企业低成本快速实现数字化转型,提高开发人员工作效率。
What is Apache Airflow Scheduler?
Apache Airflow 是一种以有向无环图 (DAG) 形式表达和执行工作流程的工具。Airflow scheduler触发任务并提供监控任务进度的工具。
快速运行
docker run --name airflow-scheduler bitnami/airflow-scheduler:latest
您可以在环境变量部分找到默认凭据和可用的配置选项。
先决条件
要运行此应用程序,您需要Docker Engine >= 1.10.0。建议使用Docker Compose1.6.0版本或更高版本。
使用
Apache Airflow Scheduler 是使用CeleryExecutor. 因此,您将需要其余的 Airflow 组件才能使该图像正常工作。您将需要一台Airflow Web 服务器、一个或多个Airflow Workers、一个PostgreSQL 数据库和一台Redis(R) 服务器。
使用 Docker 命令行
- 创建网络docker network create airflow-tier
- 创建用于 PostgreSQL 持久化的卷并创建 PostgreSQL 容器
docker volume create --name postgresql_data
docker run -d --name postgresql \
-e POSTGRESQL_USERNAME=bn_airflow \
-e POSTGRESQL_PASSWORD=bitnami1 \
-e POSTGRESQL_DATABASE=bitnami_airflow \
--net airflow-tier \
--volume postgresql_data:/bitnami/postgresql \
bitnami/postgresql:latest
- 创建 Redis(R) 持久性卷并创建 Redis(R) 容器
docker volume create --name redis_data
docker run -d --name redis \
-e ALLOW_EMPTY_PASSWORD=yes \
--net airflow-tier \
--volume redis_data:/bitnami \
bitnami/redis:latest
- 启动 Apache Airflow Scheduler Web 容器
docker run -d --name airflow -p 8080:8080 \
-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \
-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \
-e AIRFLOW_EXECUTOR=CeleryExecutor \
-e AIRFLOW_DATABASE_NAME=bitnami_airflow \
-e AIRFLOW_DATABASE_USERNAME=bn_airflow \
-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \
-e AIRFLOW_LOAD_EXAMPLES=yes \
-e AIRFLOW_PASSWORD=bitnami123 \
-e AIRFLOW_USERNAME=user \
-e AIRFLOW_EMAIL=user@example.com \
--net airflow-tier \
bitnami/airflow:latest
- 启动 Apache Airflow Scheduler 调度程序容器
docker run -d --name airflow-scheduler \
-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \
-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \
-e AIRFLOW_EXECUTOR=CeleryExecutor \
-e AIRFLOW_DATABASE_NAME=bitnami_airflow \
-e AIRFLOW_DATABASE_USERNAME=bn_airflow \
-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \
-e AIRFLOW_LOAD_EXAMPLES=yes \
--net airflow-tier \
bitnami/airflow-scheduler:latest
- 启动 Apache Airflow Scheduler 工作容器
docker run -d --name airflow-worker \
-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \
-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \
-e AIRFLOW_EXECUTOR=CeleryExecutor \
-e AIRFLOW_DATABASE_NAME=bitnami_airflow \
-e AIRFLOW_DATABASE_USERNAME=bn_airflow \
-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \
--net airflow-tier \
bitnami/airflow-worker:latest
访问 : http://your-ip:8080
持久化应用
Airflow 容器依赖 PostgreSQL 数据库和 Redis 来保存数据。这意味着 Airflow 不会保留任何东西。为了避免数据丢失,您应该安装卷以持久保存PostgreSQL 数据和Redis(R) 数据
上面的示例定义了 docker 卷postgresql_data,即 、 和redis_data。只要不删除这些卷,Airflow 应用程序状态就会持续存在。
为了避免无意中删除这些卷,您可以将主机目录安装为数据卷。或者,您可以使用卷插件来托管卷数据。
使用 Docker Compose 将主机目录挂载为数据卷
以下docker-compose.yml模板演示了如何使用主机目录作为数据卷。
version: '2'
services:
postgresql:
image: 'bitnami/postgresql:latest'
environment:
- POSTGRESQL_DATABASE=bitnami_airflow
- POSTGRESQL_USERNAME=bn_airflow
- POSTGRESQL_PASSWORD=bitnami1
volumes:
- /path/to/postgresql-persistence:/bitnami
redis:
image: 'bitnami/redis:latest'
environment:
- ALLOW_EMPTY_PASSWORD=yes
volumes:
- /path/to/redis-persistence:/bitnami
airflow-worker:
image: bitnami/airflow-worker:latest
environment:
- AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho=
- AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08=
- AIRFLOW_EXECUTOR=CeleryExecutor
- AIRFLOW_DATABASE_NAME=bitnami_airflow
- AIRFLOW_DATABASE_USERNAME=bn_airflow
- AIRFLOW_DATABASE_PASSWORD=bitnami1
- AIRFLOW_LOAD_EXAMPLES=yes
airflow-scheduler:
image: bitnami/airflow-scheduler:latest
environment:
- AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho=
- AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08=
- AIRFLOW_EXECUTOR=CeleryExecutor
- AIRFLOW_DATABASE_NAME=bitnami_airflow
- AIRFLOW_DATABASE_USERNAME=bn_airflow
- AIRFLOW_DATABASE_PASSWORD=bitnami1
- AIRFLOW_LOAD_EXAMPLES=yes
airflow:
image: bitnami/airflow:latest
environment:
- AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho=
- AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08=
- AIRFLOW_EXECUTOR=CeleryExecutor
- AIRFLOW_DATABASE_NAME=bitnami_airflow
- AIRFLOW_DATABASE_USERNAME=bn_airflow
- AIRFLOW_DATABASE_PASSWORD=bitnami1
- AIRFLOW_PASSWORD=bitnami123
- AIRFLOW_USERNAME=user
- AIRFLOW_EMAIL=user@example.com
ports:
- '8080:8080'
使用 Docker 命令行将主机目录挂载为数据卷
- 创建网络(如果不存在)docker network create airflow-tier
- 使用主机卷创建 PostgreSQL 容器
docker run -d --name postgresql \
-e POSTGRESQL_USERNAME=bn_airflow \
-e POSTGRESQL_PASSWORD=bitnami1 \
-e POSTGRESQL_DATABASE=bitnami_airflow \
--net airflow-tier \
--volume /path/to/postgresql-persistence:/bitnami \
bitnami/postgresql:latest
- 使用主机卷创建 Redis(R) 容器
docker run -d --name redis \
-e ALLOW_EMPTY_PASSWORD=yes \
--net airflow-tier \
--volume /path/to/redis-persistence:/bitnami \
bitnami/redis:latest
- 创建 Airflow 容器
docker run -d --name airflow -p 8080:8080 \
-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \
-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \
-e AIRFLOW_EXECUTOR=CeleryExecutor \
-e AIRFLOW_DATABASE_NAME=bitnami_airflow \
-e AIRFLOW_DATABASE_USERNAME=bn_airflow \
-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \
-e AIRFLOW_LOAD_EXAMPLES=yes \
-e AIRFLOW_PASSWORD=bitnami123 \
-e AIRFLOW_USERNAME=user \
-e AIRFLOW_EMAIL=user@example.com \
--net airflow-tier \
bitnami/airflow:latest
- 创建 Apache Airflow Scheduler 容器
docker run -d --name airflow-scheduler \
-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \
-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \
-e AIRFLOW_EXECUTOR=CeleryExecutor \
-e AIRFLOW_DATABASE_NAME=bitnami_airflow \
-e AIRFLOW_DATABASE_USERNAME=bn_airflow \
-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \
-e AIRFLOW_LOAD_EXAMPLES=yes \
--net airflow-tier \
bitnami/airflow-scheduler:latest
- 创建 Airflow Worker 容器
docker run -d --name airflow-worker \
-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \
-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \
-e AIRFLOW_EXECUTOR=CeleryExecutor \
-e AIRFLOW_DATABASE_NAME=bitnami_airflow \
-e AIRFLOW_DATABASE_USERNAME=bn_airflow \
-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \
--net airflow-tier \
bitnami/airflow-worker:latest
配置
安装额外的 python 模块
该容器支持在启动时安装额外的 python 模块。为此,您可以requirements.txt根据您的特定需求在路径下挂载一个文件/bitnami/python/requirements.txt。
环境变量
可定制的环境变量
Name | Description | Default Value |
AIRFLOW_EXECUTOR | Airflow executor. | SequentialExecutor |
AIRFLOW_EXECUTOR | Airflow executor. | CeleryExecutor |
AIRFLOW_FORCE_OVERWRITE_CONF_FILE | Force the airflow.cfg config file generation. | no |
AIRFLOW_WEBSERVER_HOST | Airflow webserver host | 127.0.0.1 |
AIRFLOW_WEBSERVER_PORT_NUMBER | Airflow webserver port. | 8080 |
AIRFLOW_LOAD_EXAMPLES | To load example tasks into the application. | yes |
AIRFLOW_HOSTNAME_CALLABLE | Method to obtain the hostname. | socket.gethostname |
AIRFLOW_DATABASE_HOST | Hostname for PostgreSQL server. | postgresql |
AIRFLOW_DATABASE_HOST | Hostname for PostgreSQL server. | 127.0.0.1 |
AIRFLOW_DATABASE_PORT_NUMBER | Port used by PostgreSQL server. | 5432 |
AIRFLOW_DATABASE_NAME | Database name that Airflow will use to connect with the database. | bitnami_airflow |
AIRFLOW_DATABASE_USERNAME | Database user that Airflow will use to connect with the database. | bn_airflow |
AIRFLOW_DATABASE_USE_SSL | Set to yes if the database is using SSL. | no |
AIRFLOW_REDIS_USE_SSL | Set to yes if Redis(R) uses SSL. | no |
REDIS_HOST | Hostname for Redis(R) server. | redis |
REDIS_HOST | Hostname for Redis(R) server. | 127.0.0.1 |
REDIS_PORT_NUMBER | Port used by Redis(R) server. | 6379 |
REDIS_DATABASE | Name of the Redis(R) database. | 1 |
只读环境变量
Name | Description | Value |
AIRFLOW_BASE_DIR | Airflow installation directory. | ${BITNAMI_ROOT_DIR}/airflow |
AIRFLOW_HOME | Airflow home directory. | ${AIRFLOW_BASE_DIR} |
AIRFLOW_BIN_DIR | Airflow directory for binary executables. | ${AIRFLOW_BASE_DIR}/venv/bin |
AIRFLOW_LOGS_DIR | Airflow logs directory. | ${AIRFLOW_BASE_DIR}/logs |
AIRFLOW_SCHEDULER_LOGS_DIR | Airflow scheduler logs directory. | ${AIRFLOW_LOGS_DIR}/scheduler |
AIRFLOW_LOG_FILE | Airflow logs file. | ${AIRFLOW_LOGS_DIR}/airflow-scheduler.log |
AIRFLOW_CONF_FILE | Airflow configuration file. | ${AIRFLOW_BASE_DIR}/airflow.cfg |
AIRFLOW_TMP_DIR | Airflow directory temporary files. | ${AIRFLOW_BASE_DIR}/tmp |
AIRFLOW_PID_FILE | Path to the Airflow PID file. | ${AIRFLOW_TMP_DIR}/airflow-scheduler.pid |
AIRFLOW_DAGS_DIR | Airflow data to be persisted. | ${AIRFLOW_BASE_DIR}/dags |
AIRFLOW_DAEMON_USER | Airflow system user. | airflow |
AIRFLOW_DAEMON_GROUP | Airflow system group. | airflow |
除了前面的环境变量之外,配置文件中的所有参数都可以使用以下格式的环境变量覆盖:AIRFLOW__{SECTION}__{KEY}. 注意双下划线。
使用 Docker Compose 指定环境变量
version: '2'
services:
airflow:
image: bitnami/airflow:1
environment:
- AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho=
- AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08=
- AIRFLOW_EXECUTOR=CeleryExecutor
- AIRFLOW_DATABASE_NAME=bitnami_airflow
- AIRFLOW_DATABASE_USERNAME=bn_airflow
- AIRFLOW_DATABASE_PASSWORD=bitnami1
- AIRFLOW_PASSWORD=bitnami123
- AIRFLOW_USERNAME=user
- AIRFLOW_EMAIL=user@example.com
在 Docker 命令行上指定环境变量
docker run -d --name airflow -p 8080:8080 \
-e AIRFLOW_FERNET_KEY=46BKJoQYlPPOexq0OhDZnIlNepKFf87WFwLbfzqDDho= \
-e AIRFLOW_SECRET_KEY=a25mQ1FHTUh3MnFRSk5KMEIyVVU2YmN0VGRyYTVXY08= \
-e AIRFLOW_EXECUTOR=CeleryExecutor \
-e AIRFLOW_DATABASE_NAME=bitnami_airflow \
-e AIRFLOW_DATABASE_USERNAME=bn_airflow \
-e AIRFLOW_DATABASE_PASSWORD=bitnami1 \
-e AIRFLOW_PASSWORD=bitnami123 \
-e AIRFLOW_USERNAME=user \
-e AIRFLOW_EMAIL=user@example.com \
--volume airflow_data:/bitnami \
bitnami/airflow:latest
更多推荐
所有评论(0)