K8S调用GPU资源配置指南(原創)
在GPU節點安裝NVIDIA驅動和docker,以及nvidia-container-toolkit (docker 19版本之後安裝nvidia-container-toolkit,無需安裝nvidia-docker)如有正常打印出GPU信息,說明正常。修改docker runtime。使用以下官方測試方式。
一.在GPU節點安裝nvidia-container-toolkit
在GPU節點安裝NVIDIA驅動和docker,以及nvidia-container-toolkit (docker 19版本之後安裝nvidia-container-toolkit,無需安裝nvidia-docker)
二.修改daemon.json
修改docker runtime
"runtimes": {
"nvidia": {
"path": "/usr/bin/nvidia-container-runtime",
"runtimeArgs": []
}
}
三.驗證runtime是否生效
使用以下官方測試方式
docker run --rm --runtime=nvidia --gpus all nvidia/cuda:11.6.2-base-ubuntu20.04 nvidia-smi
如有正常打印出GPU信息,說明正常
四.安裝nvidia-device-plugin插件
執行以下yaml
wget https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/v0.12.0/nvidia-device-plugin.yml
kubectl create -f nvidia-device-plugin.yml
yml內容
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: nvidia-device-plugin-daemonset
namespace: kube-system
spec:
selector:
matchLabels:
name: nvidia-device-plugin-ds
updateStrategy:
type: RollingUpdate
template:
metadata:
labels:
name: nvidia-device-plugin-ds
spec:
tolerations:
- key: nvidia.com/gpu
operator: Exists
effect: NoSchedule
# Mark this pod as a critical add-on; when enabled, the critical add-on
# scheduler reserves resources for critical add-on pods so that they can
# be rescheduled after a failure.
# See Guaranteed Scheduling For Critical Add-On Pods | Kubernetes
priorityClassName: "system-node-critical"
containers:
- image: nvcr.io/nvidia/k8s-device-plugin:v0.12.0
name: nvidia-device-plugin-ctr
env:
- name: FAIL_ON_INIT_ERROR
value: "false"
securityContext:
allowPrivilegeEscalation: false
capabilities:
drop: ["ALL"]
volumeMounts:
- name: device-plugin
mountPath: /var/lib/kubelet/device-plugins
volumes:
- name: device-plugin
hostPath:
path: /var/lib/kubelet/device-plugins
五.查看nvidia-device-plugin-daemonset 運行狀態
kubectl get pod -n kube-system
注意:只有GPU節點的nvidia-device-plugin-daemonset運行是正常的,打印日誌如下:
其他沒有安裝gpu卡的節點,打印日誌會報以下錯誤:
六.查看node節點上gpu標籤
kubectl describe node zf-ai-gpu02
GPU所有資源
已分配GPU資源
更多推荐
所有评论(0)