【推荐阅读】

值得一看!从0编写一份PID控制代码

浅谈linux 内核网络 sk_buff 之克隆与复制

深入linux内核架构--进程&线程

浅析linux内核网络协议栈--linux bridge

深入理解SR-IOV和IO虚拟化

内核编程中常见的一种模式是,在当前线程之外初始化某个活动,然后等待该活动的结束。这个活动可能是,创建一个新的内核线程或者新的用户空间进程、对一个已有进程的某个请求,或者某种类型的硬件动作,等等。在这种情况下,我们可以使用信号量来同步这两个任务。然而,内核中提供了另外一种机制——completion接口。Completion是一种轻量级的机制,他允许一个线程告诉另一个线程某个工作已经完成。

理解同步completion的例子

这是一个公交司机和售票员之间的线程调度,用于理解完成量,完成量是对信号量的一种补充,主要用于多处理器系统上发生的一种微妙竞争。在这里两个线程间同步,只有当售票员把门关了后,司机才能开动车,只有当司机停车后,售票员才能开门。

线程(进程)之间的同步大多使用completion,而互斥资源的保护大多使用信号量(互斥锁or自旋锁)。

结构与初始化

Completion在内核中的实现基于等待队列(关于等待队列理论知识在前面的文章中有介绍),completion结构很简单:

 struct completion {  
     unsigned int done;/*用于同步的原子量*/  
    wait_queue_head_t wait;/*等待事件队列*/  
 }; 

和信号量一样,初始化分为静态初始化和动态初始化两种情况:

静态初始化:

 #define COMPLETION_INITIALIZER(work) \  
      { 0, __WAIT_QUEUE_HEAD_INITIALIZER((work).wait) }  
    
  #define DECLARE_COMPLETION(work) \  
      struct completion work = COMPLETION_INITIALIZER(work)  )  

动态初始化:

static inline void init_completion(struct completion *x)
{
	x->done = 0;
	init_waitqueue_head(&x->wait);
}

可见,两种初始化都将用于同步的done原子量置位了0,后面我们会看到,该变量在wait相关函数中减一,在complete系列函数中加一。

实现

同步函数一般都成对出现,completion也不例外,我们看看最基本的两个complete和wait_for_completion函数的实现。

wait_for_completion最终由下面函数实现:

static inline long __sched
do_wait_for_common(struct completion *x, long timeout, int state)
{
    if (!x->done) {
        DECLARE_WAITQUEUE(wait, current);

        wait.flags |= WQ_FLAG_EXCLUSIVE;
        __add_wait_queue_tail(&x->wait, &wait);
        do {
            if (signal_pending_state(state, current)) {
                timeout = -ERESTARTSYS;
                break;
            }
            __set_current_state(state);
            spin_unlock_irq(&x->wait.lock);
            timeout = schedule_timeout(timeout);
            spin_lock_irq(&x->wait.lock);
        } while (!x->done && timeout);
        __remove_wait_queue(&x->wait, &wait);
        if (!x->done)
            return timeout;
    }
    x->done--;
    return timeout ?: 1;
}

complete实现如下:

void complete(struct completion *x)
{
    unsigned long flags;

    spin_lock_irqsave(&x->wait.lock, flags);
    x->done++;
    __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
    spin_unlock_irqrestore(&x->wait.lock, flags);
}

不看内核实现的源代码我们也能想到他的实现,不外乎在wait函数中循环等待done变为可用(正),而另一边的complete函数为唤醒函数,当然是将done加一,唤醒待处理的函数。是的,从上面的代码看到,和我们想的一样。内核也是这样做的。

运用

运用LDD3中的例子:

#include <linux/module.h>
#include <linux/init.h>

#include <linux/sched.h>
#include <linux/kernel.h>
#include <linux/fs.h>
#include <linux/types.h>
#include <linux/completion.h>

MODULE_LICENSE("GPL");

static int complete_major=250;
DECLARE_COMPLETION(comp);

ssize_t complete_read(struct file *filp,char __user *buf,size_t count,loff_t *pos)
{
    printk(KERN_ERR "process %i (%s) going to sleep\n",current->pid,current->comm);
    wait_for_completion(&comp);
    printk(KERN_ERR "awoken %i (%s)\n",current->pid,current->comm);
    return 0;
}

ssize_t complete_write(struct file *filp,const char __user *buf,size_t count,loff_t *pos)
{
    printk(KERN_ERR "process %i (%s) awakening the readers...\n",current->pid,current->comm);
    complete(&comp);
    return count;
}

struct file_operations complete_fops={
    .owner=THIS_MODULE,
    .read=complete_read,
    .write=complete_write,
};

int complete_init(void)
{
    int result;
    result=register_chrdev(complete_major,"complete",&complete_fops);
    if(result<0)
        return result;
    if(complete_major==0)
        complete_major=result;
    return 0;
}
void complete_cleanup(void)
{
    unregister_chrdev(complete_major,"complete");
}
module_init(complete_init);
module_exit(complete_cleanup);

测试步骤

1, mknod /dev/complete创建complete节点,在linux上驱动程序需要手动创建文件节点。

2, insmod complete.ko 插入驱动模块,这里要注意的是,因为我们的代码中是手动分配的设备号,很可能被系统已经使用了,所以如果出现这种情况,查看/proc/devices文件。找一个没有被使用的设备号

3, cat /dev/complete 用于读该设备,调用设备的读函数

4, 打开另一个终端输入 echo “hello” > /dev/complete 该命令用于写入该设备

Logo

瓜分20万奖金 获得内推名额 丰厚实物奖励 易参与易上手

更多推荐