k8s部署问题及解决方法
记录k8s使用的问题及解决方法
·
1.k8s集群使用GPU问题
首先需要安装 nvidia-container-runtime
yum install nvidia-container-runtime
然后修改 /etc/docker/daemon.json 文件,添加以下内容
"default-runtime": "nvidia",
"runtimes": {
"nvidia": {
"path": "/usr/bin/nvidia-container-runtime",
"runtimeArgs": []
}
},
然后重新载入daemon并重启docker
systemctl daemon-reload
systemctl restart docker
最后安装 k8s插件 nvidia-device-plugin
nvidia-device-plugin.yml
# Copyright (c) 2019, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: nvidia-device-plugin-daemonset
namespace: kube-system
spec:
selector:
matchLabels:
name: nvidia-device-plugin-ds
updateStrategy:
type: RollingUpdate
template:
metadata:
# This annotation is deprecated. Kept here for backward compatibility
# See https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/
annotations:
scheduler.alpha.kubernetes.io/critical-pod: ""
labels:
name: nvidia-device-plugin-ds
spec:
tolerations:
# This toleration is deprecated. Kept here for backward compatibility
# See https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/
- key: CriticalAddonsOnly
operator: Exists
- key: nvidia.com/gpu
operator: Exists
effect: NoSchedule
# Mark this pod as a critical add-on; when enabled, the critical add-on
# scheduler reserves resources for critical add-on pods so that they can
# be rescheduled after a failure.
# See https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/
priorityClassName: "system-node-critical"
containers:
- image: nvidia/k8s-device-plugin:1.11
name: nvidia-device-plugin-ctr
securityContext:
allowPrivilegeEscalation: false
capabilities:
drop: ["ALL"]
volumeMounts:
- name: device-plugin
mountPath: /var/lib/kubelet/device-plugins
volumes:
- name: device-plugin
hostPath:
path: /var/lib/kubelet/device-plugins
最后执行
kubectl create -f nvidia-device-plugin.yml
这时候集群就可以使用GPU了
2.使用hostNetwork时的dns配置
当yaml文件里面配置了pod使用hostnetwork模式时,此时pod会使用宿主机网络进行通信,集群的默认dns策略是dnsPolicy 默认为 ClusterFirst,这时候集群的pod之间的service就不能互相访问了,需要设置dns策略为ClusterFirstWithHostNet
hostNetwork: true
dnsPolicy: ClusterFirstWithHostNet
3.拉镜像的密钥设置
首先我们先在服务器登录一下镜像仓库
docker login {imageurl} //换成自己的镜像仓库地址
然后在指定的namespace创建一个密钥
kubectl create secret generic {image-secret} --from-file=.dockerconfigjson=/root/.docker/config.json --type=kubernetes.io/dockerconfigjson -n test
更多推荐
已为社区贡献1条内容
所有评论(0)