1.背景介绍

PyTorch 是现在非常流行使用的深度学习框架,在我们日常学习过程中用到 PyTorch 的机会很多。
尤其是在科研工作中,由于其使用便利,文档丰富而全面,构建一个实验非常迅速,所以选择使用 PyTorch 的人也非常多。
但是在深度学习模型的应用层面,我们需要将模型在实际使用场景中进行部署,这时候用 Python 写的模型需要根据需求设置到不同的平台上进行调用,甚至是不同的编程语言去进行调用,这时候模型的转换会是一个非常大的问题。
所以出现了 ONNX,这东西建立了一个通用的框架,不管你是 PyTorch 训练出来的模型,还是 Tensorflow,亦或是 PaddlePaddle,都可以统一转换为 ONNX 格式,方便进行模型的部署调用。

本文的素材来源主要是 PyTorch 和 ONNX 的官网,有兴趣的同学可以直接去看官网文档:

PyTorch 的 ONNX 使用示例:
https://pytorch.org/docs/stable/onnx.html#example-alexnet-from-pytorch-to-onnx

ONNX 官网:
https://onnx.ai/

2.依赖环境

这里列出本文案例实际使用的主要环境配置:

  • Windows 10
  • IDE:Pycharm
  • torch 1.12.0
  • onnx 1.12.0
  • onnxruntime-gpu 1.12.0
  • CUDA 11.6
  • cuDNN 11.4(推荐,过高版本会报错

这里安装 onnx 可以使用以下命令:

conda install -c conda-forge onnx

安装结果如下,可以看到这里同时安装了 protobuf:

The following packages will be downloaded:

    package                    |            build
    ---------------------------|-----------------
    libprotobuf-3.20.1         |       h7755175_0         2.4 MB  conda-forge
    onnx-12.0.0                |   py38h5c4532e_0         8.1 MB  conda-forge
    protobuf-3.20.1            |   py38haa244fe_0         237 KB  conda-forge
    six-1.16.0                 |     pyh6c4a22f_0          14 KB  conda-forge
    typing-extensions-4.3.0    |       hd8ed1ab_0           8 KB  conda-forge
    ------------------------------------------------------------
                                           Total:        10.8 MB

The following NEW packages will be INSTALLED:

  libprotobuf        conda-forge/win-64::libprotobuf-3.20.1-h7755175_0
  onnx               conda-forge/win-64::onnx-12.0.0-py38h5c4532e_0
  protobuf           conda-forge/win-64::protobuf-3.20.1-py38haa244fe_0
  six                conda-forge/noarch::six-1.16.0-pyh6c4a22f_0
  typing-extensions  conda-forge/noarch::typing-extensions-4.3.0-hd8ed1ab_0

安装 onnxruntime-gpu 使用以下命令:

pip install onnxruntime-gpu

3.保存模型

这里我们和官网的示例一样,尝试保存一个预训练完成的 AlexNet

import torch
import torchvision

dummy_input = torch.randn(1, 3, 224, 224, device="cuda")
model = torchvision.models.alexnet(weights=torchvision.models.AlexNet_Weights.IMAGENET1K_V1).cuda()

input_names = [ "actual_input_1" ] + [ "learned_%d" % i for i in range(16) ]
output_names = [ "output1" ]

torch.onnx.export(model, dummy_input, "alexnet.onnx", verbose=True, input_names=input_names,
                  output_names=output_names)

该脚本会将一个 AlexNet 的预训练模型输出为 alexnet.onnx 文件,存储在运行目录下
第一次运行的时候会有个下载模型的过程,时间稍长

调用 torch.onnx.export() 函数会运行一次模型,来追踪模型的执行,然后输出这个被追踪的模型到特定的文件中

参数 model 表示要存储的模型
参数 dummy_input 表示虚拟输入
参数 input_names 定义了输入层的名字,还有中间各层的名字
参数 “alexnet.onnx” 表示要存储的文件名字
参数 verbose=True 表示转化的同时打印一个具有可读性的模型表示,打印效果如下

Exported graph: graph(%actual_input_1 : Float(1, 3, 224, 224, strides=[150528, 50176, 224, 1], requires_grad=0, device=cuda:0),
      %learned_0 : Float(64, 3, 11, 11, strides=[363, 121, 11, 1], requires_grad=1, device=cuda:0),
      %learned_1 : Float(64, strides=[1], requires_grad=1, device=cuda:0),
      %learned_2 : Float(192, 64, 5, 5, strides=[1600, 25, 5, 1], requires_grad=1, device=cuda:0),
      %learned_3 : Float(192, strides=[1], requires_grad=1, device=cuda:0),
      %learned_4 : Float(384, 192, 3, 3, strides=[1728, 9, 3, 1], requires_grad=1, device=cuda:0),
      %learned_5 : Float(384, strides=[1], requires_grad=1, device=cuda:0),
      %learned_6 : Float(256, 384, 3, 3, strides=[3456, 9, 3, 1], requires_grad=1, device=cuda:0),
      %learned_7 : Float(256, strides=[1], requires_grad=1, device=cuda:0),
      %learned_8 : Float(256, 256, 3, 3, strides=[2304, 9, 3, 1], requires_grad=1, device=cuda:0),
      %learned_9 : Float(256, strides=[1], requires_grad=1, device=cuda:0),
      %learned_10 : Float(4096, 9216, strides=[9216, 1], requires_grad=1, device=cuda:0),
      %learned_11 : Float(4096, strides=[1], requires_grad=1, device=cuda:0),
      %learned_12 : Float(4096, 4096, strides=[4096, 1], requires_grad=1, device=cuda:0),
      %learned_13 : Float(4096, strides=[1], requires_grad=1, device=cuda:0),
      %learned_14 : Float(1000, 4096, strides=[4096, 1], requires_grad=1, device=cuda:0),
      %learned_15 : Float(1000, strides=[1], requires_grad=1, device=cuda:0)):
  %input : Float(1, 64, 55, 55, strides=[193600, 3025, 55, 1], requires_grad=0, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[11, 11], pads=[2, 2, 2, 2], strides=[4, 4], onnx_name="Conv_0"](%actual_input_1, %learned_0, %learned_1) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\modules\conv.py:453:0
  %onnx::MaxPool_18 : Float(1, 64, 55, 55, strides=[193600, 3025, 55, 1], requires_grad=1, device=cuda:0) = onnx::Relu[onnx_name="Relu_1"](%input) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\functional.py:1455:0
  %input.4 : Float(1, 64, 27, 27, strides=[46656, 729, 27, 1], requires_grad=1, device=cuda:0) = onnx::MaxPool[ceil_mode=0, kernel_shape=[3, 3], pads=[0, 0, 0, 0], strides=[2, 2], onnx_name="MaxPool_2"](%onnx::MaxPool_18) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\functional.py:782:0
  %input.8 : Float(1, 192, 27, 27, strides=[139968, 729, 27, 1], requires_grad=0, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[5, 5], pads=[2, 2, 2, 2], strides=[1, 1], onnx_name="Conv_3"](%input.4, %learned_2, %learned_3) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\modules\conv.py:453:0
  %onnx::MaxPool_21 : Float(1, 192, 27, 27, strides=[139968, 729, 27, 1], requires_grad=1, device=cuda:0) = onnx::Relu[onnx_name="Relu_4"](%input.8) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\functional.py:1455:0
  %input.12 : Float(1, 192, 13, 13, strides=[32448, 169, 13, 1], requires_grad=1, device=cuda:0) = onnx::MaxPool[ceil_mode=0, kernel_shape=[3, 3], pads=[0, 0, 0, 0], strides=[2, 2], onnx_name="MaxPool_5"](%onnx::MaxPool_21) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\functional.py:782:0
  %input.16 : Float(1, 384, 13, 13, strides=[64896, 169, 13, 1], requires_grad=0, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1], onnx_name="Conv_6"](%input.12, %learned_4, %learned_5) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\modules\conv.py:453:0
  %onnx::Conv_24 : Float(1, 384, 13, 13, strides=[64896, 169, 13, 1], requires_grad=1, device=cuda:0) = onnx::Relu[onnx_name="Relu_7"](%input.16) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\functional.py:1455:0
  %input.20 : Float(1, 256, 13, 13, strides=[43264, 169, 13, 1], requires_grad=0, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1], onnx_name="Conv_8"](%onnx::Conv_24, %learned_6, %learned_7) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\modules\conv.py:453:0
  %onnx::Conv_26 : Float(1, 256, 13, 13, strides=[43264, 169, 13, 1], requires_grad=1, device=cuda:0) = onnx::Relu[onnx_name="Relu_9"](%input.20) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\functional.py:1455:0
  %input.24 : Float(1, 256, 13, 13, strides=[43264, 169, 13, 1], requires_grad=0, device=cuda:0) = onnx::Conv[dilations=[1, 1], group=1, kernel_shape=[3, 3], pads=[1, 1, 1, 1], strides=[1, 1], onnx_name="Conv_10"](%onnx::Conv_26, %learned_8, %learned_9) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\modules\conv.py:453:0
  %onnx::MaxPool_28 : Float(1, 256, 13, 13, strides=[43264, 169, 13, 1], requires_grad=1, device=cuda:0) = onnx::Relu[onnx_name="Relu_11"](%input.24) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\functional.py:1455:0
  %input.28 : Float(1, 256, 6, 6, strides=[9216, 36, 6, 1], requires_grad=1, device=cuda:0) = onnx::MaxPool[ceil_mode=0, kernel_shape=[3, 3], pads=[0, 0, 0, 0], strides=[2, 2], onnx_name="MaxPool_12"](%onnx::MaxPool_28) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\functional.py:782:0
  %onnx::Flatten_30 : Float(1, 256, 6, 6, strides=[9216, 36, 6, 1], requires_grad=1, device=cuda:0) = onnx::AveragePool[kernel_shape=[1, 1], strides=[1, 1], onnx_name="AveragePool_13"](%input.28) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\functional.py:1214:0
  %input.32 : Float(1, 9216, strides=[9216, 1], requires_grad=1, device=cuda:0) = onnx::Flatten[axis=1, onnx_name="Flatten_14"](%onnx::Flatten_30) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torchvision\models\alexnet.py:50:0
  %input.36 : Float(1, 4096, strides=[4096, 1], requires_grad=1, device=cuda:0) = onnx::Gemm[alpha=1., beta=1., transB=1, onnx_name="Gemm_15"](%input.32, %learned_10, %learned_11) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\modules\linear.py:114:0
  %onnx::Gemm_33 : Float(1, 4096, strides=[4096, 1], requires_grad=1, device=cuda:0) = onnx::Relu[onnx_name="Relu_16"](%input.36) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\functional.py:1455:0
  %input.40 : Float(1, 4096, strides=[4096, 1], requires_grad=1, device=cuda:0) = onnx::Gemm[alpha=1., beta=1., transB=1, onnx_name="Gemm_17"](%onnx::Gemm_33, %learned_12, %learned_13) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\modules\linear.py:114:0
  %onnx::Gemm_35 : Float(1, 4096, strides=[4096, 1], requires_grad=1, device=cuda:0) = onnx::Relu[onnx_name="Relu_18"](%input.40) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\functional.py:1455:0
  %output1 : Float(1, 1000, strides=[1000, 1], requires_grad=1, device=cuda:0) = onnx::Gemm[alpha=1., beta=1., transB=1, onnx_name="Gemm_19"](%onnx::Gemm_35, %learned_14, %learned_15) # F:\Softwares\Anaconda3\envs\python3.8pytorch\lib\site-packages\torch\nn\modules\linear.py:114:0
  return (%output1)

4.读取模型

代码如下:

import onnx

# Load the ONNX model
model = onnx.load("alexnet.onnx")

# Check that the model is well formed
onnx.checker.check_model(model)

# Print a human readable representation of the graph
print(onnx.helper.printable_graph(model.graph))

运行后没有报错,表示读取成功
打印出来模型看看:

graph torch_jit (
  %actual_input_1[FLOAT, 1x3x224x224]
) initializers (
  %learned_0[FLOAT, 64x3x11x11]
  %learned_1[FLOAT, 64]
  %learned_2[FLOAT, 192x64x5x5]
  %learned_3[FLOAT, 192]
  %learned_4[FLOAT, 384x192x3x3]
  %learned_5[FLOAT, 384]
  %learned_6[FLOAT, 256x384x3x3]
  %learned_7[FLOAT, 256]
  %learned_8[FLOAT, 256x256x3x3]
  %learned_9[FLOAT, 256]
  %learned_10[FLOAT, 4096x9216]
  %learned_11[FLOAT, 4096]
  %learned_12[FLOAT, 4096x4096]
  %learned_13[FLOAT, 4096]
  %learned_14[FLOAT, 1000x4096]
  %learned_15[FLOAT, 1000]
) {
  %input = Conv[dilations = [1, 1], group = 1, kernel_shape = [11, 11], pads = [2, 2, 2, 2], strides = [4, 4]](%actual_input_1, %learned_0, %learned_1)
  %onnx::MaxPool_18 = Relu(%input)
  %input.4 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [0, 0, 0, 0], strides = [2, 2]](%onnx::MaxPool_18)
  %input.8 = Conv[dilations = [1, 1], group = 1, kernel_shape = [5, 5], pads = [2, 2, 2, 2], strides = [1, 1]](%input.4, %learned_2, %learned_3)
  %onnx::MaxPool_21 = Relu(%input.8)
  %input.12 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [0, 0, 0, 0], strides = [2, 2]](%onnx::MaxPool_21)
  %input.16 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%input.12, %learned_4, %learned_5)
  %onnx::Conv_24 = Relu(%input.16)
  %input.20 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%onnx::Conv_24, %learned_6, %learned_7)
  %onnx::Conv_26 = Relu(%input.20)
  %input.24 = Conv[dilations = [1, 1], group = 1, kernel_shape = [3, 3], pads = [1, 1, 1, 1], strides = [1, 1]](%onnx::Conv_26, %learned_8, %learned_9)
  %onnx::MaxPool_28 = Relu(%input.24)
  %input.28 = MaxPool[ceil_mode = 0, kernel_shape = [3, 3], pads = [0, 0, 0, 0], strides = [2, 2]](%onnx::MaxPool_28)
  %onnx::Flatten_30 = AveragePool[kernel_shape = [1, 1], strides = [1, 1]](%input.28)
  %input.32 = Flatten[axis = 1](%onnx::Flatten_30)
  %input.36 = Gemm[alpha = 1, beta = 1, transB = 1](%input.32, %learned_10, %learned_11)
  %onnx::Gemm_33 = Relu(%input.36)
  %input.40 = Gemm[alpha = 1, beta = 1, transB = 1](%onnx::Gemm_33, %learned_12, %learned_13)
  %onnx::Gemm_35 = Relu(%input.40)
  %output1 = Gemm[alpha = 1, beta = 1, transB = 1](%onnx::Gemm_35, %learned_14, %learned_15)
  return %output1
}

5.随机输入测试

代码如下:

import onnxruntime as ort
import numpy as np

ort_session = ort.InferenceSession("alexnet.onnx", providers=['CUDAExecutionProvider'])

outputs = ort_session.run(
    None,
    {"actual_input_1": np.random.randn(1, 3, 224, 224).astype(np.float32)},
)
print(outputs[0].shape)

这里的输入维度是 (1, 3, 224, 224) 表示
Batch size:1
Channels:3
Height:224
Wight:224

输出维度是 (1, 1000) 表示
Batch size:1
Dimension:1000

这里仅预测了一个样本,而 AlexNet 是在 ImageNet 上完成的预训练,这个数据集有 1000 个类别,所以输出在第二个维度上是 1000

6.实际图片测试

先下载一个想要测试的图片,放到运行目录下,比如:
请添加图片描述

代码如下:

import torch, cv2
import numpy as np
import torch.nn.functional as F
from torchvision import models
import matplotlib.pyplot as plt
import os
import onnxruntime as ort

os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

def preict_one_img(img_path):
    img = cv2.imdecode(np.fromfile(img_path, dtype=np.uint8), 1)
    img = cv2.resize(img, (224, 224))
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 把图片BGR变成RGB
    print(img.shape)

    img = np.transpose(img,(2,0,1))
    img = np.expand_dims(img, 0)
    img = img.astype(np.float32)
    img /= 255
    print(img.shape)

    outputs = ort_session.run(
        None,
        {"actual_input_1": img.astype(np.float32)},
    )
    print(np.max(outputs[0]))
    print(np.argmax(outputs[0]))

    out = torch.tensor(outputs[0],dtype=torch.float64)
    out = F.softmax(out, dim=1)
    proba, class_id = torch.max(out, 1)

    proba = float(proba[0])
    class_id = int(class_id)
    img = img.squeeze(0)
    new_img = np.transpose(img, (1, 2, 0))
    plt.imshow(new_img)
    plt.title("predicted class: %s .  probability: %3f" % (classes[class_id], proba))
    plt.show()

if __name__ == '__main__':
    classes = models.AlexNet_Weights.IMAGENET1K_V1.value.meta["categories"]
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    img_path = "./cat_224x224.jpg"
    model_path = "./alexnet.onnx"
    ort_session = ort.InferenceSession(model_path, providers=['CUDAExecutionProvider'])
    preict_one_img(img_path)

测试结果如下:
请添加图片描述
预测结果是一只波斯猫

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐