一、书籍介绍

《神经网络与深度学习从理论到实践》(2022年7月新出的)是复旦大学邱锡鹏老师与百度飞桨对《神经网络与深度学习》(蒲公英书)的配套理论课程的实践课程内容。

其中,《神经网络与深度学习》是开源书籍和开源项目

书籍《神经网络与深度学习从理论到实践》是近期的网络直播课程,直播时间2022年7月19日-2022年7月27日

《神经网络与深度学习从理论到实践》直播地址
《神经网络与深度学习从理论到实践》百度飞桨课程地址

二、课节笔记

课节1:paddle使用基础

paddle基本上和pytorch和numpy的用法基本一致,有些地方略有不同。

reshape使用技巧

使用reshape时存在一些技巧,比如:

  • -1表示这个维度的值是从张量的元素总数和剩余维度推断出来的。因此,有且只有一个维度可以被设置为-1。
  • 0表示实际的维数是从张量的对应维数中复制出来的,因此shape中0所对应的索引值不能超过张量的总维度。

改变张量数据类型

如果想改变张量的数据类型,可以通过调用paddle.castAPI来实现。

# 定义dtype为float32的Tensor
float32_Tensor = paddle.to_tensor(1.0)
# paddle.cast可以将输入数据的数据类型转换为指定的dtype并输出。支持输出和输入数据类型相同。
int64_Tensor = paddle.cast(float32_Tensor, dtype='int64')
print("Tensor after cast to int64:", int64_Tensor.dtype)
Tensor after cast to int64: paddle.int64

张量的数学运算

张量支持包括基础数学运算、逻辑运算、矩阵运算等100余种运算操作,以加法为例,有如下两种实现方式:
1)使用飞桨API paddle.add(x,y)
2)使用张量类成员函数x.add(y)

张量类的基础数学函数如下:

x.abs()                       # 逐元素取绝对值
x.ceil()                      # 逐元素向上取整
x.floor()                     # 逐元素向下取整
x.round()                     # 逐元素四舍五入
x.exp()                       # 逐元素计算自然常数为底的指数
x.log()                       # 逐元素计算x的自然对数
x.reciprocal()                # 逐元素求倒数
x.square()                    # 逐元素计算平方
x.sqrt()                      # 逐元素计算平方根
x.sin()                       # 逐元素计算正弦
x.cos()                       # 逐元素计算余弦
x.add(y)                      # 逐元素加
x.subtract(y)                 # 逐元素减
x.multiply(y)                 # 逐元素乘(积)
x.divide(y)                   # 逐元素除
x.mod(y)                      # 逐元素除并取余
x.pow(y)                      # 逐元素幂
x.max()                       # 指定维度上元素最大值,默认为全部维度
x.min()                       # 指定维度上元素最小值,默认为全部维度
x.prod()                      # 指定维度上元素累乘,默认为全部维度
x.sum()                       # 指定维度上元素的和,默认为全部维度

以下操作与上述结果相同。

x + y  -> x.add(y)            # 逐元素加
x - y  -> x.subtract(y)       # 逐元素减
x * y  -> x.multiply(y)       # 逐元素乘(积)
x / y  -> x.divide(y)         # 逐元素除
x % y  -> x.mod(y)            # 逐元素除并取余
x ** y -> x.pow(y)            # 逐元素幂

张量的逻辑运算

张量类的逻辑运算函数如下:

x.isfinite()                  # 判断Tensor中元素是否是有限的数字,即不包括inf与nan
x.equal_all(y)                # 判断两个Tensor的全部元素是否相等,并返回形状为[1]的布尔类Tensor
x.equal(y)                    # 判断两个Tensor的每个元素是否相等,并返回形状相同的布尔类Tensor
x.not_equal(y)                # 判断两个Tensor的每个元素是否不相等
x.less_than(y)                # 判断Tensor x的元素是否小于Tensor y的对应元素
x.less_equal(y)               # 判断Tensor x的元素是否小于或等于Tensor y的对应元素
x.greater_than(y)             # 判断Tensor x的元素是否大于Tensor y的对应元素
x.greater_equal(y)            # 判断Tensor x的元素是否大于或等于Tensor y的对应元素
x.allclose(y)                 # 判断两个Tensor的全部元素是否接近

张量的矩阵运算

张量类还包含了矩阵运算相关的函数,如矩阵的转置、范数计算和乘法等。

x.t()                         # 矩阵转置
x.transpose([1, 0])           # 交换第 0 维与第 1 维的顺序
x.norm('fro')                 # 矩阵的弗罗贝尼乌斯范数
x.dist(y, p=2)                # 矩阵(x-y)的2范数
x.matmul(y)                   # 矩阵乘法

有些矩阵运算中也支持大于两维的张量,比如matmul函数,对最后两个维度进行矩阵乘。比如x是形状为[j,k,n,m]的张量,另一个y是[j,k,m,p]的张量,则x.matmul(y)输出的张量形状为[j,k,n,p]。

广播机制(没搞懂)

广播(Broadcasting)机制允许在一些运算时使用不同形状的张量。通常来讲,如果有一个形状较小和一个形状较大的张量,会希望多次使用较小的张量来对较大的张量执行某些操作,看起来像是形状较小的张量首先被扩展到和较大的张量形状一致,然后再做运算。

广播机制主要遵循如下规则(参考Numpy广播机制):

1)每个张量至少为一维张量。

2)从后往前比较张量的形状,当前维度的大小要么相等,要么其中一个等于1,要么其中一个不存在。

广播例子1(没看懂):

# 当两个Tensor的形状一致时,可以广播
x = paddle.ones((2, 3, 4))
y = paddle.ones((2, 3, 4))
z = x + y
print('broadcasting with two same shape tensor: ', z.shape)

x = paddle.ones((2, 3, 1, 5))
y = paddle.ones((3, 4, 1))
# 从后往前依次比较:
# 第一次:y的维度大小是1
# 第二次:x的维度大小是1
# 第三次:x和y的维度大小相等,都为3
# 第四次:y的维度不存在
# 所以x和y是可以广播的
z = x + y
print('broadcasting with two different shape tensor:', z.shape)
broadcasting with two same shape tensor:  [2, 3, 4]
broadcasting with two different shape tensor: [2, 3, 4, 5]
  • 从输出结果看,x与y在上述两种情况中均遵循广播规则,因此在张量相加时可以广播。我们再定义两个shape分别为[2, 3, 4]和[2, 3, 6]的张量,观察这两个张量是否能够通过广播操作相加。

广播例子2(这个好理解):

x = paddle.ones((2, 3, 4))
y = paddle.ones((2, 3, 6))
z = x + y

输出结果为:

ValueError: (InvalidArgument) Broadcast dimension mismatch.

从输出结果看,此时x和y是不能广播的,因为在第一次从后往前的比较中,4和6不相等,不符合广播规则。

广播机制的计算规则

现在我们知道在什么情况下两个张量是可以广播的。两个张量进行广播后的结果张量的形状计算规则如下:

1)如果两个张量shape的长度不一致,那么需要在较小长度的shape前添加1,直到两个张量的形状长度相等。

2) 保证两个张量形状相等之后,每个维度上的结果维度就是当前维度上较大的那个。

以张量x和y进行广播为例,x的shape为[2, 3, 1,5],张量y的shape为[3,4,1]。首先张量y的形状长度较小,因此要将该张量形状补齐为[1, 3, 4, 1],再对两个张量的每一维进行比较。从第一维看,x在一维上的大小为2,y为1,因此,结果张量在第一维的大小为2。以此类推,对每一维进行比较,得到结果张量的形状为[2, 3, 4, 5]。

由于矩阵乘法函数paddle.matmul在深度学习中使用非常多,这里需要特别说明一下它的广播规则:

1)如果两个张量均为一维,则获得点积结果。

2) 如果两个张量都是二维的,则获得矩阵与矩阵的乘积。

3) 如果张量x是一维,y是二维,则将x的shape转换为[1, D],与y进行矩阵相乘后再删除前置尺寸。

4) 如果张量x是二维,y是一维,则获得矩阵与向量的乘积。

5) 如果两个张量都是N维张量(N > 2),则根据广播规则广播非矩阵维度(除最后两个维度外其余维度)。比如:如果输入x是形状为[j,1,n,m]的张量,另一个y是[k,m,p]的张量,则输出张量的形状为[j,k,n,p]。

In [4]

x = paddle.ones([10, 1, 5, 2])
y = paddle.ones([3, 2, 5])
z = paddle.matmul(x, y)
print('After matmul: ', z.shape)
After matmul:  [10, 3, 5, 5]

从输出结果看,计算张量乘积时会使用到广播机制。


注意
飞桨的API有原位(inplace)操作和非原位操作之分。原位操作即在原张量上保存操作结果,非原位操作则不会修改原张量,而是返回一个新的张量来表示运算结果。在飞桨框架V2.1及之后版本,部分API有对应的原位操作版本,在API后加上’_'表示,如:x.add(y)是非原位操作,x.add_(y)为原位操作。


不懂的地方

课节2:机器学习

课节3:线性分类

课节4:前馈神经网络

课节5:卷积神经网络

课节6:循环神经网络

课节7:网络优化与正则化

课节8:注意力机制

三、作业笔记

第1课作业:安装Paddle

  • 作业内容:成功安装paddle到本地
  • 完成标志:在本地计算机成功导入paddle
  • 完成方法:在安装帮助页面里按照帮助进行安装:
    https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/conda/windows-conda.html
  • 第1课作业很简单,主要是安个包

第2课作业:

第3课作业:

第4课作业:

第5课作业:

第6课作业:

第7课作业:

第8课作业:

一些记录

Logo

更多推荐