决策树

决策树思想的来源非常朴素,程序设计中的条件分支结构就是if-then结构,最早的决策树就是利用这类结构分割数据的一种分类学习方法
在这里插入图片描述

信息的度量与作用

在这里插入图片描述
每猜一次给一块钱,告诉我是否猜对了,那么我需要掏多少钱才能知道谁是冠军?我可以把球编上号,从1到32,然后提问:冠 军在1-16号吗?依次询问,只需要五次,就可以知道结果。
在这里插入图片描述
在这里插入图片描述

信息熵

在这里插入图片描述

信息和消除不确定性是相联系的

信息增益

得知特征X的信息而使得类Y的信息的不确定性减少的程度

特征A对训练数据集D信息增益g(D,A),定义为集合D的**信息熵H(D)与特征A给定条件下D的信息条件熵H(D|A)**之差,即公式为:
在这里插入图片描述

信息增益计算

在这里插入图片描述
在这里插入图片描述

常见决策树使用的算法

ID3
信息增益 最大的准则
C4.5
信息增益比 最大的准则
CART
回归树: 平方误差 最小
分类树: 基尼系数 最小的准则 在sklearn中可以选择划分的原则

sklearn决策树API

在这里插入图片描述

泰坦尼克号生存预测案例

泰坦尼克号数据

在泰坦尼克号和titanic2数据帧描述泰坦尼克号上的个别乘客的生存状态。在泰坦尼克号的数据帧不包含从剧组信息,但它确实包含了乘客的一半的实际年龄。关于泰坦尼克号旅客的数据的主要来源是百科全书Titanica。这里使用的数据集是由各种研究人员开始的。其中包括许多研究人员创建的旅客名单,由Michael A. Findlay编辑。
我们提取的数据集中的特征是票的类别,存活,乘坐班,年龄,登陆,home.dest,房间,票,船和性别。乘坐班是指乘客班(1,2,3),是社会经济阶层的代表。
其中age数据存在缺失。

在这里插入图片描述

分类模型

在这里插入图片描述

决策树的结构、本地保存

在这里插入图片描述

决策树的优缺点以及改进

优点:
简单的理解和解释,树木可视化。
需要很少的数据准备,其他技术通常需要数据归一化,

缺点:
决策树学习者可以创建不能很好地推广数据的过于复杂的树,
这被称为过拟合。
决策树可能不稳定,因为数据的小变化可能会导致完全不同的树
被生成

改进:
减枝cart算法
随机森林

from sklearn.datasets import load_iris, fetch_20newsgroups, load_boston
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import classification_report
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier, export_graphviz
from sklearn.ensemble import RandomForestClassifier
import pandas as pd


def decision():
    """
    决策树对泰坦尼克号进行预测生死
    :return: None
    """
    # 获取数据
    titan = pd.read_csv("http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt")

    # 处理数据,找出特征值和目标值
    x = titan[['pclass', 'age', 'sex']]

    y = titan['survived']

    print(x)
    # 缺失值处理
    x['age'].fillna(x['age'].mean(), inplace=True)

    # 分割数据集到训练集合测试集
    x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)

    # 进行处理(特征工程)特征-》类别-》one_hot编码
    dict = DictVectorizer(sparse=False)

    x_train = dict.fit_transform(x_train.to_dict(orient="records"))

    print(dict.get_feature_names())

    x_test = dict.transform(x_test.to_dict(orient="records"))

    print(x_train)
    # 用决策树进行预测
    dec = DecisionTreeClassifier()
    dec.fit(x_train, y_train)
    # 预测准确率
    print("预测的准确率:", dec.score(x_test, y_test))
    #
    # 导出决策树的结构
    export_graphviz(dec, out_file="./tree.dot", feature_names=['年龄', 'pclass=1st', 'pclass=2nd', 'pclass=3rd', '女性', '男性'])

    # 随机森林进行预测 (超参数调优)
    # rf = RandomForestClassifier(n_jobs=-1)

    param = {"n_estimators": [120, 200, 300, 500, 800, 1200], "max_depth": [5, 8, 15, 25, 30]}

    # 网格搜索与交叉验证
    gc = GridSearchCV(rf, param_grid=param, cv=2)

    gc.fit(x_train, y_train)

    print("准确率:", gc.score(x_test, y_test))

    print("查看选择的参数模型:", gc.best_params_)

    return None


if __name__ == "__main__":
    decision()



随机森林

集成学习通过建立几个模型组合的来解决单一预测问题。它的工作原理是生成多个分类器/模型,各自独立地学习和作出预测。这些预测最后结合成单预测,因此优于任何一个单分类的做出预测。
在这里插入图片描述

定义

定义:在机器学习中,随机森林是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。

例如, 如果你训练了5个树, 其中有4个树的结果是True, 1个数的结果是False, 那么最终结果会是True.

在这里插入图片描述
在这里插入图片描述

集成学习API

在这里插入图片描述

优点

  1. 在当前所有算法中,具有极好的准确率
  2. 能够有效地运行在大数据集上
  3. 能够处理具有高维特征的输入样本,而且不需要降维
  4. 能够评估各个特征在分类问题上的重要性
  5. 对于缺省值问题也能够获得很好得结果
Logo

CSDN联合极客时间,共同打造面向开发者的精品内容学习社区,助力成长!

更多推荐