提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档


前言

Dropout出现的原因
训练深度神经网络的时候,总是会遇到两大问题:(1)容易过拟合(2)网络费时

在机器学习的模型中,如果模型的参数太多,而训练样本又太少,训练出来的模型很容易产生过拟合的现象。在训练神经网络的时候经常会遇到过拟合的问题,过拟合具体表现在:模型在训练数据上损失函数较小,预测准确率较高;但是在测试数据上损失函数比较大,预测准确率较低。Dropout可以比较有效的缓解过拟合的发生,在一定程度上达到正则化的效果。

过拟合是很多机器学习的通病。如果模型过拟合,那么得到的模型几乎不能用。为了解决过拟合问题,一般会采用模型集成的方法,即训练多个模型进行组合。此时,训练模型费时就成为一个很大的问题,不仅训练多个模型费时,测试多个模型也是很费时。

一、dropout是什么?

Dropout可以作为训练深度神经网络的一种trick供选择。在每个训练批次中,通过忽略一半数量的特征检测器(让一半的隐层节点值为0),可以明显地减少过拟合现象。这种方式可以减少特征检测器(隐层节点)间的相互作用,检测器相互作用是指某些检测器依赖其他检测器才能发挥作用。

保证稀疏性:

Dropout说的简单一点就是:我们在前向传播的时候,让某个神经元的激活值以一定的概率p(伯努利分布)停止工作,这样可以使模型泛化性更强,因为它不会太依赖某些局部的特征,如下图所示。
在这里插入图片描述
那么为什么可以防止过拟合呢?

(1)取平均的作用: 先回到标准的模型即没有dropout,我们用相同的训练数据去训练5个不同的神经网络,一般会得到5个不同的结果,此时我们可以采用 “5个结果取均值”或者“多数取胜的投票策略”去决定最终结果。例如3个网络判断结果为数字9,那么很有可能真正的结果就是数字9,其它两个网络给出了错误结果。这种“综合起来取平均”的策略通常可以有效防止过拟合问题。因为不同的网络可能产生不同的过拟合,取平均则有可能让一些“相反的”拟合互相抵消。dropout掉不同的隐藏神经元就类似在训练不同的网络,随机删掉一半隐藏神经元导致网络结构已经不同,整个dropout过程就相当于对很多个不同的神经网络取平均。而不同的网络产生不同的过拟合,一些互为“反向”的拟合相互抵消就可以达到整体上减少过拟合。

(2)减少神经元之间复杂的共适应关系: 因为dropout程序导致两个神经元不一定每次都在一个dropout网络中出现。这样权值的更新不再依赖于有固定关系的隐含节点的共同作用,阻止了某些特征仅仅在其它特定特征下才有效果的情况 。迫使网络去学习更加鲁棒的特征 ,这些特征在其它的神经元的随机子集中也存在。换句话说假如我们的神经网络是在做出某种预测,它不应该对一些特定的线索片段太过敏感,即使丢失特定的线索,它也应该可以从众多其它线索中学习一些共同的特征。从这个角度看dropout就有点像L1,L2正则,减少权重使得网络对丢失特定神经元连接的鲁棒性提高。

(3)Dropout类似于性别在生物进化中的角色:物种为了生存往往会倾向于适应这种环境,环境突变则会导致物种难以做出及时反应,性别的出现可以繁衍出适应新环境的变种,有效的阻止过拟合,即避免环境改变时物种可能面临的灭绝。

(4) 增加稀疏性
但当数据量小的时候,可以通过稀疏性,来增加特征的区分度。

二、dropout过程

在这里插入图片描述

1)首先随机(临时)删掉网络中一半的隐藏神经元,输入输出神经元保持不变(上图中虚线为部分临时被删除的神经元)。
2) 然后把输入x通过修改后的网络前向传播,然后把得到的损失结果通过修改的网络反向传播。一小批训练样本执行完这个过程后,在没有被删除的神经元上按照随机梯度下降法更新对应的参数(w,b)。
3)然后继续重复这一过程:
----恢复被删掉的神经元(此时被删除的神经元保持原样,而没有被删除的神经元已经有所更新)
----从隐藏层神经元中随机选择一个一半大小的子集临时删除掉(备份被删除神经元的参数)。
----对一小批训练样本,先前向传播然后反向传播损失并根据随机梯度下降法更新参数(w,b) (没有被删除的那一部分参数得到更新,删除的神经元参数保持被删除前的结果)。
不断重复这一过程。

一般用在train不用在test。

原文链接:https://blog.csdn.net/program_developer/article/details/80737724

三、dropout在神经网络中的过程

训练过程:
在这里插入图片描述
未使用dropout:
在这里插入图片描述
使用dropout:
在这里插入图片描述

上面公式中Bernoulli函数是为了生成概率r向量,也就是随机生成一个0、1的向量。
代码层面实现让某个神经元以概率p停止工作,其实就是让它的激活函数值以概率p变为0。比如我们某一层网络神经元的个数为1000个,其激活函数输出值为y1、y2、y3、…、y1000,我们dropout比率选择0.4,那么这一层神经元经过dropout后,1000个神经元中会有大约400个的值被置为0。
注意: 经过上面屏蔽掉某些神经元,使其激活值为0以后,我们还需要对向量y1……y1000进行缩放,也就是乘以1/(1-p)。如果你在训练的时候,经过置0后,没有对y1……y1000进行缩放(rescale),那么在测试的时候,就需要对权重进行缩放成为pw, 与训练阶段保持一致。

测试过程:

在这里插入图片描述
在这里插入图片描述
为什么这样做?
训练阶段假设数据输入为X,以概率p丢弃,所以服从B(p)分布,E(x) = pXW, W为权重。
测试阶段需要将权重恢复到和训练阶段相同,才可以保证数据分布的一致性,所以要乘P。

pytorch实现:X = nn.Dropout(p=0.5)

手动实现:


import torch
import torch.nn as nn
import numpy as np

def dropout(X, drop_prob):
    X=X.float()
    assert 0 <= drop_prob  <= 1
    keep_prob = 1-drop_prob
    if keep_prob ==0:
        return torch.zeros_like(X)
    mask = (torch.randn(X.shape) < keep_prob).float()
    return mask * X / keep_prob

Logo

CSDN联合极客时间,共同打造面向开发者的精品内容学习社区,助力成长!

更多推荐