
简介
该用户还未填写简介
擅长的技术栈
可提供的服务
暂无可提供的服务
前言计算机视觉(CV)一直是目前深度学习领域最热的研究领域,其是一种交叉学科包括计算机科学(computer science / (Graphics, Algorithms, Theory, Systems, Architecture)、数学 (Information Retrieval, Machine Learning)、工程学(Robotics, Speech, NLP, Image...
GAN在NLP的应用
一:VGG详解本节主要对VGG网络结构做一个详细的解读,并针对它所在Alexnet上做出的改动做详解的分析。首先,附上一张VGG的网络结构图:由上图所知,VGG一共有五段卷积,每段卷积之后紧接着最大池化层,作者一共实验了6种网络结构。分别是VGG-11,VGG-13,VGG-16,VGG-19,网络的输入是224*224大小的图像,输出是图像分类结果(本文只针对网络在图像分类任务上
BEGAN立论基础BEGAN是Google在17年上半年出的一篇论文,此论文对GAN做了进一步的改进,提出了一种新的评价生成器生成质量的方式,使GAN即使使用很简单的网络,不加一些训练trick比如BN,minibatch,使用SELU激活函数等等,也能实现很好的训练效果,完全不用担心模式崩溃(model collapse)和训练不平衡的问题。
前言本文将详细介绍 tf 实现风格迁移的小demo,看完这篇就可以去实现自己的风格迁移了,复现的算法来自论文Perceptual" role="presentation" style="position: relative;">PerceptualPerceptualPerceptual LossesforReal−Time" role="presentation" st
前言计算机视觉(CV)一直是目前深度学习领域最热的研究领域,其是一种交叉学科包括计算机科学(computer science / (Graphics, Algorithms, Theory, Systems, Architecture)、数学 (Information Retrieval, Machine Learning)、工程学(Robotics, Speech, NLP, Image...
GAN原理、优缺点、应用简要总结
GAN的应用汇总(持续更新)前言:GAN全称是Generator adversarial networks,中文是生成对抗网络,是一种生成式模型,由good fellow在14年提出,近四年来被AI研究者疯狂研(guan)究(shui),更有大神建立一个GAN zoo,收集了上百种不同的GAN:https://github.com/hindupuravinash/the-gan...
Batchnorm原理详解前言:Batchnorm是深度网络中经常用到的加速神经网络训练,加速收敛速度及稳定性的算法,可以说是目前深度网络必不可少的一部分。本文旨在用通俗易懂的语言,对深度学习的常用算法–batchnorm的原理及其代码实现做一个详细的解读。本文主要包括以下几个部分。Batchnorm主要解决的问题Batchnorm原理解读Batchnorm的优点B
引言本文主要介绍如何在tensorflow上仅使用200个带标签的mnist图像,实现在一万张测试图片上99%的测试精度,原理在于使用GAN做半监督学习。前文主要介绍一些原理部分,后文详细介绍代码及其实现原理。前文介绍比较简单,有基础的同学请掠过直接看第二部分,文章末尾给出了代码GitHub链接。对GAN不了解的同学可以查看微信公众号:机器学习算法全栈工程师 的GAN入门文章。本博客中的代...







