
简介
该用户还未填写简介
擅长的技术栈
未填写擅长的技术栈
可提供的服务
暂无可提供的服务
Python实现硬间隔SVM、软间隔SVM
SVM:从类别上理解可以将SVM分为硬间隔SVM(hard-margin SVM)、软间隔SVM(soft-margin SVM)、核SVM。个人理解:在数据线性可分的前提下,硬间隔SVM是找到离分类平面较近的支持向量,再由支持向量找到最优超平面将数据进行分类。软间隔SVM是为了在线性不可分的数据中适用,对每个样本点引入一个松弛变量,即在约束条件中增加一个惩罚项。核技巧能够让svm从普通的特征空间
Python实现傅里叶变换提取图像高频区域(边缘)
最近在项目里需要用到傅里叶变换获取图像的高频区域(边缘),之前在csdn上看到一篇关于使用圆形滤波器的,使用效果并不好,图像提取高频信息后的图像在纯色区域有和明显的振铃效应,之后看到了这篇高质量的文章-- ,记录下来当做自己的笔记。使用高斯滤波器过滤频率信息振铃效应(在时域中使用矩形函数的滤波器会导致在频域中的涟波,其原因就如同Sinc滤波器(在频域中为矩形函数)在时域中产生的涟波一样;在这两个例
到底了







