登录社区云,与社区用户共同成长
邀请您加入社区
该用户还未填写简介
暂无可提供的服务
主成分分析(Principal Component Analysis,PCA)是一种经典的无监督降维方法,其核心思想是通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,这些新的变量被称为"主成分"。
支持向量机是一种基于间隔最大化原则的监督学习模型,它通过找到数据集中的最优超平面来区分不同的类别。在二维空间中,这个超平面可以看作是一条线;在三维空间中,它是一个平面;而在更高维空间中,它是一个超平面。