I have a pandas Series object with each value being a DataFrame. I am trying convert this into a single DataFrame with all of the Series values (individual DataFrame) stacked on top of each other. How can I achieve this without a loop?
A toy example below to generate the test object (results).
import pandas as pd
import numpy as np
numrows = 10000
def toy_function(x):
silly_sequence = np.random.uniform(10, 100, (x+1))
toy = pd.DataFrame({'ID':pd.Series(np.random.random_integers(1,20,3)),'VALUE':pd.Series((np.median(silly_sequence),np.mean(silly_sequence), np.max(silly_sequence)))})
return toy
results = pd.DataFrame({'ID':range(numrows)})['ID'].apply(toy_function)
results is of Series type and each element is a DataFrame like so:
In [1]: results[1]
Out[1]:
ID VALUE
0 17 40.035398
1 8 40.035398
2 20 66.483083
I am looking for a way to stack results[1], results[2] etc. on top of each other to yield a DataFrame like this:
ID VALUE
0 17 40.035398
1 8 40.035398
2 20 66.483083
4 12 25.035398
5 1 25.135398
6 19 65.553083
...

所有评论(0)