What is the difference between np.sum and np.add.reduce?
While the docs are quite explicit:
For example, add.reduce() is equivalent to sum().
The performance of the two seems to be quite different: for relatively small array sizes add.reduce is about twice faster.
$ python -mtimeit -s"import numpy as np; a = np.random.rand(100); summ=np.sum" "summ(a)"
100000 loops, best of 3: 2.11 usec per loop
$ python -mtimeit -s"import numpy as np; a = np.random.rand(100); summ=np.add.reduce" "summ(a)"
1000000 loops, best of 3: 0.81 usec per loop
$ python -mtimeit -s"import numpy as np; a = np.random.rand(1000); summ=np.sum" "summ(a)"
100000 loops, best of 3: 2.78 usec per loop
$ python -mtimeit -s"import numpy as np; a = np.random.rand(1000); summ=np.add.reduce" "summ(a)"
1000000 loops, best of 3: 1.5 usec per loop
For larger array sizes, the difference seems to go away:
$ python -mtimeit -s"import numpy as np; a = np.random.rand(10000); summ=np.sum" "summ(a)"
100000 loops, best of 3: 10.7 usec per loop
$ python -mtimeit -s"import numpy as np; a = np.random.rand(10000); summ=np.add.reduce" "summ(a)"
100000 loops, best of 3: 9.2 usec per loop

所有评论(0)