If I've got a DataFrame in pandas which looks something like:
A B C
0 1 NaN 2
1 NaN 3 NaN
2 NaN 4 5
3 NaN NaN NaN
How can I get the first non-null value from each row? E.g. for the above, I'd like to get: [1, 3, 4, None] (or equivalent Series).
This is a really messy way to do this, first use first_valid_index to get the valid columns, convert the returned series to a dataframe so we can call apply row-wise and use this to index back to original df:
In [160]:
def func(x):
if x.values[0] is None:
return None
else:
return df.loc[x.name, x.values[0]]
pd.DataFrame(df.apply(lambda x: x.first_valid_index(), axis=1)).apply(func,axis=1)
Out[160]:
0 1
1 3
2 4
3 NaN
dtype: float64
EDIT
A slightly cleaner way:
In [12]:
def func(x):
if x.first_valid_index() is None:
return None
else:
return x[x.first_valid_index()]
df.apply(func, axis=1)
Out[12]:
0 1
1 3
2 4
3 NaN
dtype: float64
所有评论(0)