It seems scipy once provided a function mad to calculate the mean absolute deviation for a set of numbers:
http://projects.scipy.org/scipy/browser/trunk/scipy/stats/models/utils.py?rev=3473
However, I can not find it anywhere in current versions of scipy. Of course it is possible to just copy the old code from repository but I prefer to use scipy's version. Where can I find it, or has it been replaced or removed?
The current version of statsmodels has mad in statsmodels.robust:
>>> import numpy as np
>>> from statsmodels import robust
>>> a = np.matrix( [
... [ 80, 76, 77, 78, 79, 81, 76, 77, 79, 84, 75, 79, 76, 78 ],
... [ 66, 69, 76, 72, 79, 77, 74, 77, 71, 79, 74, 66, 67, 73 ]
... ], dtype=float )
>>> robust.mad(a, axis=1)
array([ 2.22390333, 5.18910776])
Note that by default this computes the robust estimate of the standard deviation assuming a normal distribution by scaling the result a scaling factor; from help:
Signature: robust.mad(a,
c=0.67448975019608171,
axis=0,
center=<function median at 0x10ba6e5f0>)
The version in R makes a similar normalization. If you don't want this, obviously just set c=1.
(An earlier comment mentioned this being in statsmodels.robust.scale. The implementation is in statsmodels/robust/scale.py (see github) but the robust package does not export scale, rather it exports the public functions in scale.py explicitly.)
所有评论(0)