Answer a question

I tried to convert a column from data type float64 to int64 using:

df['column name'].astype(int64)

but got an error:

NameError: name 'int64' is not defined

The column has number of people but was formatted as 7500000.0, any idea how I can simply change this float64 into int64?

Answers

Solution for pandas 0.24+ for converting numeric with missing values:

df = pd.DataFrame({'column name':[7500000.0,7500000.0, np.nan]})
print (df['column name'])
0    7500000.0
1    7500000.0
2          NaN
Name: column name, dtype: float64

df['column name'] = df['column name'].astype(np.int64)

ValueError: Cannot convert non-finite values (NA or inf) to integer

#http://pandas.pydata.org/pandas-docs/stable/user_guide/integer_na.html
df['column name'] = df['column name'].astype('Int64')
print (df['column name'])
0    7500000
1    7500000
2        NaN
Name: column name, dtype: Int64

I think you need cast to numpy.int64:

df['column name'].astype(np.int64)

Sample:

df = pd.DataFrame({'column name':[7500000.0,7500000.0]})
print (df['column name'])
0    7500000.0
1    7500000.0
Name: column name, dtype: float64

df['column name'] = df['column name'].astype(np.int64)
#same as
#df['column name'] = df['column name'].astype(pd.np.int64)
print (df['column name'])
0    7500000
1    7500000
Name: column name, dtype: int64

If some NaNs in columns need replace them to some int (e.g. 0) by fillna, because type of NaN is float:

df = pd.DataFrame({'column name':[7500000.0,np.nan]})

df['column name'] = df['column name'].fillna(0).astype(np.int64)
print (df['column name'])
0    7500000
1          0
Name: column name, dtype: int64

Also check documentation - missing data casting rules

EDIT:

Convert values with NaNs is buggy:

df = pd.DataFrame({'column name':[7500000.0,np.nan]})

df['column name'] = df['column name'].values.astype(np.int64)
print (df['column name'])
0                7500000
1   -9223372036854775808
Name: column name, dtype: int64
Logo

Python社区为您提供最前沿的新闻资讯和知识内容

更多推荐