Answer a question

I'm trying to take a second derivative in python with two numpy arrays of data.

For example, the arrays in question look like this:

import numpy as np

x = np.array([ 120. ,  121.5,  122. ,  122.5,  123. ,  123.5,  124. ,  124.5,
        125. ,  125.5,  126. ,  126.5,  127. ,  127.5,  128. ,  128.5,
        129. ,  129.5,  130. ,  130.5,  131. ,  131.5,  132. ,  132.5,
        133. ,  133.5,  134. ,  134.5,  135. ,  135.5,  136. ,  136.5,
        137. ,  137.5,  138. ,  138.5,  139. ,  139.5,  140. ,  140.5,
        141. ,  141.5,  142. ,  142.5,  143. ,  143.5,  144. ,  144.5,
        145. ,  145.5,  146. ,  146.5,  147. ])

y = np.array([  1.25750000e+01,   1.10750000e+01,   1.05750000e+01,
         1.00750000e+01,   9.57500000e+00,   9.07500000e+00,
         8.57500000e+00,   8.07500000e+00,   7.57500000e+00,
         7.07500000e+00,   6.57500000e+00,   6.07500000e+00,
         5.57500000e+00,   5.07500000e+00,   4.57500000e+00,
         4.07500000e+00,   3.57500000e+00,   3.07500000e+00,
         2.60500000e+00,   2.14500000e+00,   1.71000000e+00,
         1.30500000e+00,   9.55000000e-01,   6.65000000e-01,
         4.35000000e-01,   2.70000000e-01,   1.55000000e-01,
         9.00000000e-02,   5.00000000e-02,   2.50000000e-02,
         1.50000000e-02,   1.00000000e-02,   1.00000000e-02,
         1.00000000e-02,   1.00000000e-02,   1.00000000e-02,
         1.00000000e-02,   1.00000000e-02,   5.00000000e-03,
         5.00000000e-03,   5.00000000e-03,   5.00000000e-03,
         5.00000000e-03,   5.00000000e-03,   5.00000000e-03,
         5.00000000e-03,   5.00000000e-03,   5.00000000e-03,
         5.00000000e-03,   5.00000000e-03,   5.00000000e-03,
         5.00000000e-03,   5.00000000e-03])

I currently then have f(x) = y, and I want d^2 y / dx^2.

Numerically, I know I can either interpolate the function and take the derivative analytically or use higher order finite-differences. I think that there is enough data to use either, if one or the other is considered faster, more accurate, etc.

I have looked at np.interp() and scipy.interpolate with no success, as this returns me a fitted (linear or cubic) spline, but don't know how to get the derivative at that point.

Any guidance is much appreciated.

Answers

You can interpolate your data using scipy's 1-D Splines functions. The computed spline has a convenient derivative method for computing derivatives.

For the data of your example, using UnivariateSpline gives the following fit

import matplotlib.pyplot as plt
from scipy.interpolate import UnivariateSpline

y_spl = UnivariateSpline(x,y,s=0,k=4)

plt.semilogy(x,y,'ro',label = 'data')
x_range = np.linspace(x[0],x[-1],1000)
plt.semilogy(x_range,y_spl(x_range))

enter image description here

The fit seems reasonably good, at least visually. You might want to experiment with the parameters used by UnivariateSpline.

The second derivate of the spline fit can be simply obtained as

y_spl_2d = y_spl.derivative(n=2)

plt.plot(x_range,y_spl_2d(x_range))

enter image description here

The outcome appears somewhat unnatural (in case your data corresponds to some physical process). You may either want to change the spline fit parameters, improve your data (e.g., provide more samples, perform less noisy measurements), or decide on an analytic function to model your data and perform a curve fit (e.g., using sicpy's curve_fit)

Logo

Python社区为您提供最前沿的新闻资讯和知识内容

更多推荐