Answer a question

In maptplotlib, one can create a heatmap representation of a correlation matrix using the imshow function. By definition, such a matrix is symmetrical around its main diagonal, therefore there is no need to present both the upper and lower triangles. For example: correlation matrix
(source: wisc.edu)

The above example was taken from this site Unfortunately, I couldn't figure out how to do this in matplotlib. Setting upper/lower part of the matrix to None results in black triangle. I have googled for "matplotlib missing values", but couldn't find anything helpful

Answers

The problem with the answer provided by doug is that it relies on the fact that the colormap maps zero values to white. This means that colormaps that do not include white color are not useful. The key for solution is cm.set_bad function. You mask the unneeded parts of the matrix with None or with NumPy masked arrays and set_bad to white, instead of the default black. Adopting doug's example we get the following:

import numpy as NP
from matplotlib import pyplot as PLT
from matplotlib import cm as CM

A = NP.random.randint(10, 100, 100).reshape(10, 10)
mask =  NP.tri(A.shape[0], k=-1)
A = NP.ma.array(A, mask=mask) # mask out the lower triangle
fig = PLT.figure()
ax1 = fig.add_subplot(111)
cmap = CM.get_cmap('jet', 10) # jet doesn't have white color
cmap.set_bad('w') # default value is 'k'
ax1.imshow(A, interpolation="nearest", cmap=cmap)
ax1.grid(True)
PLT.show()
Logo

学AI,认准AI Studio!GPU算力,限时免费领,邀请好友解锁更多惊喜福利 >>>

更多推荐