Answer a question

What's the best way to handle zero denominators when dividing pandas DataFrame columns by each other in Python? for example:

df = pandas.DataFrame({"a": [1, 2, 0, 1, 5], "b": [0, 10, 20, 30, 50]})
df.a / df.b  # yields error

I'd like the ratios where the denominator is zero to be registered as NA (numpy.nan). How can this be done efficiently in pandas?

Casting to float64 does not work at level of columns:

In [29]: df
Out[29]: 
   a   b
0  1   0
1  2  10
2  0  20
3  1  30
4  5  50

In [30]: df["a"].astype("float64") / df["b"].astype("float64")
...

FloatingPointError: divide by zero encountered in divide

How can I do it just for particular columns and not entire df?

Answers

You need to work in floats, otherwise you will have integer division, prob not what you want

In [12]: df = pandas.DataFrame({"a": [1, 2, 0, 1, 5], 
                                "b": [0, 10, 20, 30, 50]}).astype('float64')

In [13]: df
Out[13]: 
   a   b
0  1   0
1  2  10
2  0  20
3  1  30
4  5  50

In [14]: df.dtypes
Out[14]: 
a    float64
b    float64
dtype: object

Here's one way

In [15]: x = df.a/df.b

In [16]: x
Out[16]: 
0         inf
1    0.200000
2    0.000000
3    0.033333
4    0.100000
dtype: float64

In [17]: x[np.isinf(x)] = np.nan

In [18]: x
Out[18]: 
0         NaN
1    0.200000
2    0.000000
3    0.033333
4    0.100000
dtype: float64

Here's another way

In [20]: df.a/df.b.replace({ 0 : np.nan })
Out[20]: 
0         NaN
1    0.200000
2    0.000000
3    0.033333
4    0.100000
dtype: float64
Logo

Python社区为您提供最前沿的新闻资讯和知识内容

更多推荐