前言

本文接上一篇文章

上一篇中已部署了etcd分布式数据库、master01节点,

本文将部署Kubernetes集群中的 worker node 节点和 CNI 网络插件。

在这里插入图片描述


四、部署node节点

4.1 所有node节点部署 docker引擎

二、使用步骤

 #所有 node 节点部署docker引擎
 #安装依赖包
 yum install -y yum-utils device-mapper-persistent-data lvm2
 #设置阿里云镜像源
 yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
 #安装 docker-ce
 yum install -y docker-ce   #docker-ce-cli、containerd.io会作为依赖包被安装
 ​
 systemctl start docker.service     #启动docker
 systemctl enable docker.service    #设置为开机自启

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

4.2 部署 Worker Node 组件

 #---------------1、在所有 node 节点上操作-----------------
 #创建kubernetes工作目录,并创建四个子目录cfg、bin、ssl、logs。cfg用于存放配置文件,bin用于存放执行文件,ssl用于存放证书文件,logs用于存放日志文件
 mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}
 ​
 #上传 node.zip 到 /opt 目录中,解压 node.zip 压缩包,获得kubelet.sh、proxy.sh
 cd /opt/
 unzip node.zip
 chmod +x kubelet.sh proxy.sh   #为两个脚本文件增加执行权限
 ​
 #--------------2、在 master01 节点上操作----------------
 #把 kubelet、kube-proxy 拷贝到两个node 节点
 cd /opt/k8s/kubernetes/server/bin
 scp kubelet kube-proxy root@192.168.192.13:/opt/kubernetes/bin/
 scp kubelet kube-proxy root@192.168.192.14:/opt/kubernetes/bin/
 ​
 #创建/opt/k8s/kubeconfig 目录,上传 kubeconfig.sh 文件到该目录中,生成 kubeconfig 的配置文件。
 #kubeconfig文件包含集群参数(CA证书、API Server 地址),客户端参数(上面生成的证书和私钥),集群context上下文参数(集群名称、用户名)。Kubenetes组件(如kubelet、 kube-proxy) 通过启动时指定不同的kubeconfig 文件可以切换到不同的集群,连接到apiserver
 mkdir /opt/k8s/kubeconfig
 ​
 cd /opt/k8s/kubeconfig
 chmod +x kubeconfig.sh
 ./kubeconfig.sh 192.168.192.11 /opt/k8s/k8s-cert/  #运行脚本,生成 kubeconfig 的配置文件。脚本后面跟的参数是 master01的IP、证书目录
 ​
 #把配置文件bootstrap.kubeconfig、kube-proxy.kubeconfig拷贝到node节点
 scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.192.13:/opt/kubernetes/cfg/
 scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.192.14:/opt/kubernetes/cfg/#RBAC授权,使用户 kubelet-bootstrap 能够有权限发起 CSR 请求
 kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap
 #CSR 请求就是kublet向APIserver请求证书的操作
 ​
 #若执行失败,可先给kubectl绑定默认cluster-admin管理员集群角色,授权集群操作权限
 kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous
 ​
 ----------------------- 虚线内是注释 -------------------------------------------------
 kubelet 采用 TLS Bootstrapping 机制,自动完成到 kube-apiserver 的注册,在 node 节点量较大或者后期自动扩容时非常有用。
 Master apiserver 启用 TLS 认证后,node 节点 kubelet 组件想要加入集群,必须使用CA签发的有效证书才能与 apiserver 通信,当 node 节点很多时,签署证书是一件很繁琐的事情。因此 Kubernetes 引入了 TLS bootstraping 机制来自动颁发客户端证书,kubelet 会以一个低权限用户自动向 apiserver 申请证书,kubelet 的证书由 apiserver 动态签署。
 ​
 kubelet 首次启动通过加载 bootstrap.kubeconfig 中的用户 Token 和 apiserver CA 证书发起首次 CSR 请求,这个 Token 被预先内置在 apiserver 节点的 token.csv 中,其身份为 kubelet-bootstrap 用户和 system:kubelet-bootstrap 用户组;想要首次 CSR 请求能成功(即不会被 apiserver 401 拒绝),则需要先创建一个 ClusterRoleBinding,将 kubelet-bootstrap 用户和 system:node-bootstrapper 内置 ClusterRole 绑定(通过 kubectl get clusterroles 可查询),使其能够发起 CSR 认证请求。
 ​
 TLS bootstrapping 时的证书实际是由 kube-controller-manager 组件来签署的,也就是说证书有效期是 kube-controller-manager 组件控制的;kube-controller-manager 组件提供了一个 --experimental-cluster-signing-duration 参数来设置签署的证书有效时间;默认为 8760h0m0s,将其改为 87600h0m0s,即 10 年后再进行 TLS bootstrapping 签署证书即可。
 ​
 也就是说 kubelet 首次访问 API Server 时,是使用 token 做认证,通过后,Controller Manager 会为 kubelet 生成一个证书,以后的访问都是用证书做认证了。
 ------------------------------------------------------------------------------------
 ​
 ​
 #---------------3、在所有node节点上操作,启动kubelet服务-------------------
 #node01节点执行kubelet.sh脚本文件,启动 kubelet 服务,位置参数1为node01的ip地址。
 cd /opt/
 ./kubelet.sh 192.168.192.13  
 ps aux | grep kubelet
 ​
 #node02节点执行kubelet.sh脚本文件,启动 kubelet 服务,位置参数1为node02的ip地址。
 cd /opt/
 ./kubelet.sh 192.168.192.14
 ps aux | grep kubelet
 ​
 ​
 #-----------------4、在 master01 节点上操作,通过 CSR 请求----------------
 #检查到 node01节点和node02节点的 kubelet 发起的 CSR 请求,Pending 表示等待集群给该节点签发证书
 kubectl get csr
NAME                                                   AGE   SIGNERNAME                                    REQUESTOR           CONDITION
node-csr--FqRx914wFZJk8-Qdsk99B2JtMwFRmjVhvr3FPKnlAY   43s   kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending
node-csr-5jiJybZzBrH_QW2ibL-SbcrEpIoV3b_OwXiDTRWv5UI   36s   kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Pending



​
 #通过node01节点kubelet的 CSR 请求
 kubectl certificate approve node-csr--FqRx914wFZJk8-Qdsk99B2JtMwFRmjVhvr3FPKnlAY
 #通过node02节点kubelet的 CSR 请求
 kubectl certificate approve node-csr-5jiJybZzBrH_QW2ibL-SbcrEpIoV3b_OwXiDTRWv5UI
 ​
 #Approved,Issued 表示已授权 CSR 请求并签发证书
 kubectl get csr
NAME                                                   AGE     SIGNERNAME                                    REQUESTOR           CONDITION
node-csr--FqRx914wFZJk8-Qdsk99B2JtMwFRmjVhvr3FPKnlAY   3m16s   kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued
node-csr-5jiJybZzBrH_QW2ibL-SbcrEpIoV3b_OwXiDTRWv5UI   3m9s    kubernetes.io/kube-apiserver-client-kubelet   kubelet-bootstrap   Approved,Issued


 ​
 ​
 #查看node节点,由于网络插件还没有部署,节点会没有准备就绪,所以显示NotReady
 kubectl get node
 NAME             STATUS     ROLES    AGE     VERSION
192.168.192.13   NotReady   <none>   2m15s   v1.20.11
192.168.192.14   NotReady   <none>   2m46s   v1.20.11

 ​
 #--------------------5、在所有 node 节点上操作,启动kube-proxy服务-----------------------
 ​
 ##node01节点操作,加载 ip_vs 模块,启动kube-proxy服务
 #加载 ip_vs 模块
 for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done
 ​
 #运行脚本,启动kube-proxy服务
 cd /opt/
 ./proxy.sh 192.168.192.13
 ps aux | grep kube-proxy
 ​
 ##node02节点操作,加载 ip_vs 模块,启动kube-proxy服务
 #加载 ip_vs 模块
 for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done
 ​
 #运行脚本,启动kube-proxy服务
 cd /opt/
 ./proxy.sh 192.168.192.14
 ps aux | grep kube-proxy

1、在所有 node 节点上操作

在这里插入图片描述

2、在 master01 节点上操作

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

3、在所有node节点上操作,启动kubelet服务

在这里插入图片描述

在这里插入图片描述

4、在 master01 节点上操作,通过 CSR 请求

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

5、在所有 node 节点上操作

在这里插入图片描述

4.3 部署网络组件

网络插件主要两种:Flannel、Calico。安装其中任意一个即可。

我们这里使用方法二,安装Calico网络插件。

方法一:部署Flannel

 #--------------在 node01 节点上操作---------------
 #上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
 cd /opt/
 docker load -i flannel.tar
 docker images
 ​
 #解压
 mkdir /opt/cni/bin
 tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin
 ​
 #传给node02节点
 scp cni/ flannel.tar root@192.168.192.14:/root/
 docker load -i flannel.tar
 ​
 #---------------在 master01 节点上操作-----------------
 #上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
 cd /opt/k8s
 kubectl apply -f kube-flannel.yml 
 ​
 kubectl get pods -n kube-system
 NAME                    READY   STATUS    RESTARTS   AGE
 kube-flannel-ds-hjtc7   1/1     Running   0          7s
 ​
 kubectl get nodes
 NAME            STATUS   ROLES    AGE   VERSION
 192.168.192.13   Ready    <none>   81m   v1.20.11

方法二:部署 Calico

 #--------------------在 master01 节点上操作---------------------------------
 #calico.yaml 文件可以直接从网上获取,使用wget下载即可
 #上传 calico.yaml 文件到 /opt/k8s 目录中,部署 CNI 网络
 cd /opt/k8s
 vim calico.yaml
 #修改里面定义Pod网络(CALICO_IPV4POOL_CIDR),要与前面kube-controller-manager配置文件指定的cluster-cidr网段一致
     - name: CALICO_IPV4POOL_CIDR
       value: "10.244.0.0/16"    #默认是192.168.0.0/16,需要改成和kube-controller-manager配置文件指定的cluster-cidr网段一致
 ​
 #通过calico.yaml资源清单,使用kubectl apply创建pod,-f指定清单文件
 kubectl apply -f calico.yaml
 ​
 #等待1~2分钟,查看pod状态,-n指定命名空间,默认是default命名空间。都是Running状态就OK了。
 kubectl get pods -n kube-system
NAME                                       READY   STATUS    RESTARTS   AGE
calico-kube-controllers-659bd7879c-k8wg6   1/1     Running   0          28m
calico-node-25tn7                          1/1     Running   0          28m
calico-node-h8nk9                          1/1     Running   0          28m

 ​ #再次查看集群的节点信息,都是Ready状态。
 #等 Calico Pod 都 Running,节点也会准备就绪
 kubectl get nodes
 NAME            STATUS   ROLES    AGE   VERSION
 192.168.192.13   Ready    <none>   3d22h   v1.20.11
 192.168.192.14   Ready    <none>   3d22h   v1.20.11
 ​
 ​
 #至此,单master节点k8s集群就部署成功了

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

4.4 部署 CoreDNS

CoreDNS:可以为集群中的 service 资源创建一个域名与 IP 的对应关系解析。

service发现是k8s中的一个重要机制,其基本功能为:在集群内通过服务名对服务进行访问,即需要完成从服务名到ClusterIP的解析。

k8s主要有两种service发现机制:环境变量和DNS。没有DNS服务的时候,k8s会采用环境变量的形式,但一旦有多个service,环境变量会变复杂,为解决该问题,我们使用DNS服务。

 #---------------1、在所有 node 节点上操作-----------------
 #上传 coredns.tar 到 /opt 目录中,之后导入镜像
 cd /opt
 docker load -i coredns.tar
 ​
 #---------------2、在 master01 节点上操作-----------------
 #上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS 
 cd /opt/k8s
 #通过coredns.yaml资源清单,使用kubectl apply创建该pod,-f指定清单文件
 kubectl apply -f coredns.yaml
 ​
 #等待1~2分钟,查看pod状态,-n指定命名空间,默认是default命名空间。coredns是Running状态就OK了。
 kubectl get pods -n kube-system 
 NAME                                       READY   STATUS    RESTARTS   AGE
calico-kube-controllers-659bd7879c-k8wg6   1/1     Running   0          42m
calico-node-25tn7                          1/1     Running   0          42m
calico-node-h8nk9                          1/1     Running   0          42m
coredns-6954c77b9b-69sxc                   1/1     Running   0          25s

 ​
 ​
 #DNS 解析测试
 kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
 If you don't see a command prompt, try pressing enter.
 / # nslookup kubernetes
Server:    10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.local

Name:      kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local
 / #

1、在所有 node 节点上操作

在这里插入图片描述

2、在 master01 节点上操作

在这里插入图片描述

在这里插入图片描述

五、CNI网络插件介绍

5.1 Kubernetes的三种网络

在这里插入图片描述

K8S 中 Pod 网络通信:

(1)Pod 内容器与容器之间的通信

在同一个 Pod 内的容器(Pod 内的容器是不会跨宿主机的)共享同一个网络命令空间,相当于它们在同一台机器上一样,可以用 localhost 地址访问彼此的端口。

(2)同一个 Node 内 Pod 之间的通信

每个 Pod 都有一个真实的全局 IP 地址,同一个 Node 内的不同 Pod 之间可以直接采用对方 Pod 的 IP 地址进行通信,Pod1 与 Pod2 都是通过 Veth 连接到同一个 docker0 网桥,网段相同,所以它们之间可以直接通信。

(3)不同 Node 上 Pod 之间的通信

Pod 地址与 docker0 在同一网段,docker0 网段与宿主机网卡是两个不同的网段,且不同 Node 之间的通信只能通过宿主机的物理网卡进行。
要想实现不同 Node 上 Pod 之间的通信,就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。因此要满足两个条件:Pod 的 IP 不能冲突;将 Pod 的 IP 和所在的 Node 的 IP 关联起来,通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信。

Overlay Network:

叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来(类似于VPN)。

VXLAN:

将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址。

5.2 Flannel 插件

Flannel 的功能是让集群中的不同节点主机创建的 Docker 容器都具有全集群唯一的虚拟 IP 地址。

Flannel 是 Overlay 网络的一种,也是将 TCP 源数据包封装在另一种网络包里面进行路由转发和通信,目前支持 udp、vxlan、 host-GW 3种数据转发方式。

  • UDP(默认方式,基于应用转发,配置简单,性能最差)
  • VXLAN(基于内核转发)
  • Host-gw(性能最好、配置麻烦)

5.2.1 Flannel UDP 模式(端口8285)

udp模式的工作原理:(基于应用进行转发,Flannel提供路由表,Flannel封装、解封装)

数据从 node01 上 Pod 的源容器中发出后,经由所在主机的 docker0 虚拟网卡转发到 flannel.1 虚拟网卡,flanneld 服务监听在 flannel.1 虚拟网卡的另外一端。

Flannel 通过 Etcd 服务维护了一张节点间的路由表。源主机 node01 的 flanneld 服务将原本的数据内容封装到 UDP 中后根据自己的路由表通过物理网卡投递给目的节点 node02 的 flanneld 服务,数据到达以后被解包,然后直接进入目的节点的 flannel.1 虚拟网卡,之后被转发到目的主机的 docker0 虚拟网卡,最后就像本机容器通信一样由 docker0 转发到目标容器。

在这里插入图片描述

在这里插入图片描述

ETCD 之 Flannel 提供说明:

  • 存储管理Flannel可分配的IP地址段资源
  • 监控 ETCD 中每个 Pod 的实际地址,并在内存中建立维护 Pod 节点路由表

5.2.2 vxlan 模式(端口4789)

vxlan 是一种overlay(虚拟隧道通信)技术,通过三层网络搭建虚拟的二层网络,跟 udp 模式具体实现不太一样:

(1)udp模式是在用户态实现的,数据会先经过tun网卡,到应用程序,应用程序再做隧道封装,再进一次内核协议栈,而vxlan是在内核当中实现的,只经过一次协议栈,在协议栈内就把vxlan包组装好。

(2)udp模式的tun网卡是三层转发,使用tun是在物理网络之上构建三层网络,属于ip in udp,vxlan模式是二层实现, overlay是二层帧,属于mac in udp。

(3)vxlan由于采用mac in udp的方式,所以实现起来会涉及mac地址学习,arp广播等二层知识,udp模式主要关注路由

Flannel VXLAN模式跨主机的工作原理:(Flannel提供路由表,由内核封装、解封装)

  1. 数据帧从主机A上Pod的源容器中发出后,经由所在主机的docker0/cni0 网络接口转发到flannel.1 接口
  2. flannel.1 收到数据帧后添加VXLAN 头部,封装在UDP报文中
  3. 主机A通过物理网卡发送封包到主机B的物理网卡中
  4. 主机B的物理网卡再通过VXLAN 默认端口4789转发到flannel.1 接口进行解封装
  5. 解封装以后,内核将数据帧发送到Cni0, 最后由Cni0 发送到桥接到此接口的容器B中。

在这里插入图片描述

5.2.3 UDP和VXLAN的区别

由于UDP模式是在用户态做转发(即基于应用进行转发,由应用程序进行封装和解封装),会多一次报文隧道封装,因此性能上会比在内核态做转发的VXLAN模式差。

UDP和VXLAN的区别:

  1. UDP基于应用程序进行转发,由应用程序进行封装和解封装;VXLAN由内核进行封装和解封装,内核效率比应用程序要高,所以VXLAN比UDP要快。

  2. UDP是数据包,VXLAN是数据帧。

  3. UDP的网卡Flannel0,VXLAN的网卡Flannel.1。

5.3 Calico 插件

5.3.1 k8s组网方案对比

1)flannel 方案:

需要在每个节点_上把发向容器的数据包进行封装后,再用隧道将封装后的数据包发送到运行着目标Pod的node节点上。目标node节点再负责去掉封装,将去除封装的数据包发送到目标Pod上。数据通信性能则大受影响。

2)calico方案:

Calico不使用隧道或NAT来实现转发,而是把Host当作Internet中的路由器,使用BGP同步路由,并使用iptables来做安全访问策略,完成跨Host转发来。

采用直接路由的方式,这种方式性能损耗最低,不需要修改报文数据,但是如果网络比较复杂场景下,路由表会很复杂,对运维同事提出了较高的要求。

5.3.2 Calico的组成和工作原理

基于三层路由表进行转发,不需要封装和解封装。

Calico主要由三个部分组成:

  • Calico CNI插件:主要负责与kubernetes对接,供kubelet 调用使用。
  • Felix:负责维护宿主机上的路由规则、FIB转发信息库等。
  • BIRD:负责分发路由规则,类似路由器。
  • Confd:配置管理组件。

Calico工作原理:

  1. Calico是通过路由表来维护每个pod的通信。
  2. Calico 的CNI插件会为每个容器设置一个 veth pair设备,然后把另一端接入到宿主机网络空间,由于没有网桥,CNI插件还需要在宿主机上为每个容器的veth pair设备配置一条路由规则,用于接收传入的IP包。
  3. 有了这样的veth pair设备以后,容器发出的IP包就会通过veth pair设备到达宿主机,然后宿主机根据路由规则的下一跳地址,发送给正确的网关,然后到达目标宿主机,再到达目标容器
  4. 这些路由规则都是Felix 维护配置的,而路由信息则是Calico BIRD 组件基于BGP(动态路由协议,可以选路)分发而来。
  5. calico实际上是将集群里所有的节点都当做边界路由器来处理,他们一起组成了一个全互联的网络,彼此之间通过BGP交换路由,这些节点我们叫做BGP Peer。

在这里插入图片描述

5.4 flannel和calico对比

flannel

  • 配置方便,功能简单,是基于overlay叠加网络实现的(在原有数据包中再封装一层),由于要进行封装和解封装的过程对性能会有一定的影响,同时不具备网络策略配置能力。
  • 三种模式:UDP、 VXLAN、HOST-GW
  • 默认网段是:10.244.0.0/16

calico

  • 功能强大,基于路由表进行转发,没有封装和解封装的过程,对性能影响较小,具有网络策略配置能力,但是路由表维护起来较为复杂。
  • 模式:BGP、IPIP
  • 默认网段192 .168.0.0/16

目前比较常用的CNI网络组件是flannel和calico,flannel的功能比较简单,不具备复杂的网络策略配置能力,calico是比较出色的网络管理插件,但具备复杂网络配置能力的同时,往往意味着本身的配置比较复杂,所以相对而言,比较小而简单的集群使用flannel,考虑到日后扩容,未来网络可能需要加入更多设备,配置更多网络策略,则使用calico更好。

(flannel在封装和解封装的过程中,会有性能损耗。calico没有封装解封装过程,没有性能损耗)


总结

1、node安装步骤:

  • 准备kubeconfig文件
  • 启动kubelet,发送csr请求证书
  • 启动kube-proxy
  • 安装CNI 网络插件,实现 pod 跨主机的通信
  • 安装CoreDNS 插件,可以实现 service 名称解析到clusterIP

2、vxlan与vlan区别:

1)vxlan支持更多的二层网络

vlan使用12位bit表示vlan ID,因此最多支持2^12=4096个vlan(可用数量为4094)
vxlan使用的ID使用24位bit,最多可以支持2^24个

2)vxlan对已有的网络路径利用效率更高

vlan使用STP(spanning tree protocol)避免环路,会将一半的网络路径阻塞。
vxlan的数据包封装成UDP通过网络层传输,可以使用所有的网络路径。

3)vxlan可以防止物理交换机Mac表耗尽

vlan需要在交换机的Mac表中记录Mac物理地址。
vxlan采用隧道机制,Mac物理地址不需记录在交换机。

4)VXLAN在一定程度上可以实现逻辑网络拓扑和物理网络拓扑的解耦

VXLAN技术通过隧道技术在物理的三层网络中虚拟二层网络,处于VXL AN网络的终端无法察觉到VXL AN的通信过程,这样也就使得逻辑网络拓扑和物理网络拓扑实现了一定程度的解耦,网络拓扑的配置对于物理设备的配置的依赖程度有所降低,配置更灵活更方便。

5)VXLAN技术还具有多租户支持的特性

VLAN技术仅仅解决了二层网络广播域分割的问题,而VXL AN技术还具有多租户支持的特性,通过VXLAN分割,各个租户可以独立组网、通信,地址分配方面和多个租户之间地址冲突的问题也得到了解决。

Logo

K8S/Kubernetes社区为您提供最前沿的新闻资讯和知识内容

更多推荐