k8s-弹性伸缩
例如有一个Deployment控制有3个Pod,每个Pod的CPU使用率是70%、50%、90%,而HPA中配置的期望值是50%,计算期望副本数=(70 + 50 + 90)/50 = 4.2,向上取整得到5,即期望副本数就是5。可以看到,TARGETS的期望值是70%,而实际是0%,这就意味着HPA会做出缩容动作,期望副本数量=(0+0+0+0)/70=0,但是由于最小副本数为1,所以Pod数量
一、HPA工作机制
HPA(Horizontal Pod Autoscaler)是用来控制Pod水平伸缩的控制器,HPA周期性检查Pod的度量数据,计算满足HPA资源所配置的目标数值所需的副本数量,进而调整目标资源(如Deployment)的replicas字段。
HPA:根据度量值计算Pod的数量。可以配置单个和多个度量指标,配置单个度量指标时,只需要对Pod的当前度量数据求和,除以期望目标值,然后向上取整,就能得到期望的副本数。例如有一个Deployment控制有3个Pod,每个Pod的CPU使用率是70%、50%、90%,而HPA中配置的期望值是50%,计算期望副本数=(70 + 50 + 90)/50 = 4.2,向上取整得到5,即期望副本数就是5。
二、使用示例
创建一个HPA,期望CPU的利用率为70%,副本数的范围是1-10。
创建后HPA查看。
可以看到,TARGETS的期望值是70%,而实际是0%,这就意味着HPA会做出缩容动作,期望副本数量=(0+0+0+0)/70=0,但是由于最小副本数为1,所以Pod数量会调整为1。等待一段时间,可以看到Pod数量变为1。
查看HPA详情,可以在Events里面看到这样一条记录。这表示HPA在21秒前成功的执行了缩容动作,新的Pod数量为1,原因是所有度量数量都比目标值低。
$ kubectl describe hpa scale 如果再查看Deployment的详情,可以在Events里面看到这样一条记录。这表示Deployment的副本数量被设置为1了,跟HPA中看到的一致。 $ kubectl describe deploy nginx-deployment
三、Cluster AutoScaler
Cluster Autoscaler是Kubernetes提供的集群节点弹性伸缩组件,根据Pod调度状态及资源使用情况对集群的节点进行自动扩容缩容。
更多推荐
所有评论(0)