目录

Kubernetes 概述

K8S 其主要功能

K8S 的特性

Kubernetes 集群架构与组件

Kubernetes的安装部署

 操作系统初始化配置

部署 docker引擎

 部署 etcd 集群 

准备签发证书环境 

 部署 Master 组件

部署 Worker Node 组件 

 部署 CNI 网络组件 

部署 flannel

部署 Calico

​编辑部署 CoreDNS

负载均衡部署 

 部署 Dashboard 

Flannel,Calico,Dashboard

Flannel

Calico

Dashboard 介绍


Kubernetes 概述

K8S 是 Kubernetes 的缩写
因为K+8个字母+s

k8s是干什么的?
k8s是一个用于自动部署、扩展和管理“容器化(containerized)应用程序”的开源系统。
可以理解成 K8S 是负责自动化运维管理多个容器化程序(比如 Docker)的集群,是一个生态极其丰富的容器编排框架工具。 

K8S 的目标是让部署容器化应用简单高效。
K8S 解决了裸跑Docker 的若干痛点:
●单机使用,无法有效集群
●随着容器数量的上升,管理成本攀升
●没有有效的容灾、自愈机制
●没有预设编排模板,无法实现快速、大规模容器调度
●没有统一的配置管理中心工具
●没有容器生命周期的管理工具
●没有图形化运维管理工具

K8S 其主要功能


●使用 Docker 等容器技术对应用程序包装(package)、实例化(instantiate)、运行(run)。
●以集群的方式运行、管理跨机器的容器。
●解决 Docker 跨机器容器之间的通讯问题。
●K8S 的自我修复机制使得容器集群总是运行在用户期望的状态。

K8S 的特性


●弹性伸缩
使用命令、UI或者基于CPU使用情况自动快速扩容和缩容应用程序实例,保证应用业务高峰并发时的高可用性;业务低峰时回收资源,以最小成本运行服务。

●自我修复
在节点故障时重新启动失败的容器,替换和重新部署,保证预期的副本数量;杀死健康检査失败的容器,并且在未准备好之前不会处理客户端请求,确保线上服务不中断。

●服务发现和负载均衡
K8S为多个容器提供一个统一访问入口(内部IP地址和一个DNS名称),并且负载均衡关联的所有容器,使得用户无需考虑容器IP问题。

●自动发布(默认滚动发布模式)和回滚
K8S采用滚动更新策略更新应用,一次更新一个或者部分Pod,而不是同时删除所有Pod,如果更新过程中出现问题,将回滚更改,确保升级不影响业务。

●集中化配置管理和密钥管理
管理机密数据和应用程序配置,而不需要把敏感数据暴露在镜像里,提高敏感数据安全性。并可以将一些常用的配置存储在K8S中,方便应用程序使用。

●存储编排,支持外挂存储并对外挂存储资源进行编排
挂载外部存储系统,无论是来自本地存储,公有云(如AWS),还是网络存储(如NFS、Glusterfs、Ceph)都作为集群资源的一部分使用,极大提高存储使用灵活性。

●任务批处理运行
提供一次性任务,定时任务;满足批量数据处理和分析的场景。


Kubernetes 集群架构与组件


### Master 组件 ###
●Kube-apiserver
任何资源请求或调用操作都是通过 kube-apiserver 提供的接口进行。以 HTTP Restful API 提供接口服务,所有对象资源的增删改查和监听操作都交给 API Server 处理后再提交给 Etcd 存储。

可以理解成 API Server 是 K8S 的请求入口服务。API Server 负责接收 K8S 所有请求(来自 UI 界面或者 CLI 命令行工具), 然后根据用户的具体请求,去通知其他组件干活。可以说 API Server 是 K8S 集群架构的大脑。


●Kube-controller-manager
运行管理控制器,是 K8S 集群中处理常规任务的后台线程,是 K8S 集群里所有资源对象的自动化控制中心。
在 K8S 集群中,一个资源对应一个控制器,而 Controller manager 就是负责管理这些控制器的。

由一系列控制器组成,通过 API Server 监控整个集群的状态,并确保集群处于预期的工作状态,比如当某个 Node 意外宕机时,Controller Manager 会及时发现并执行自动化修复流程,确保集群始终处于预期的工作状态。


●Kube-scheduler
是负责资源调度的进程,根据调度算法为新创建的 Pod 选择一个合适的 Node 节点。  

可以理解成 K8S 所有 Node 节点的调度器。当用户要部署服务时,Scheduler 会根据调度算法选择最合适的 Node 节点来部署 Pod。
•预选策略(predicate)先把不符合条件的node节点排除,例如内存不足
•优选策略(priorities)选择出最适合的node节点,cpu占用,内存剩余最多的那个


### 配置存储中心 ###
●etcd
K8S 的存储服务。etcd 是分布式键值存储系统,存储了 K8S 的关键配置和用户配置,K8S 中仅 API Server 才具备读写权限,其他组件必须通过 API Server 的接口才能读写数据。


### Node 组件 ###
●Kubelet
Node 节点的监视器,以及与 Master 节点的通讯器。Kubelet 是 Master 节点安插在 Node 节点上的“眼线”,它会定时向 API Server 汇报自己 Node 节点上运行的服务的状态,并接受来自 Master 节点的指示采取调整措施。
在 Kubernetes 集群中,在每个 Node(又称 Worker Node)上都会启动一个 kubelet 服务进程。该进程用于处理 Master 下发到本节点的任务,管理 Pod 及 Pod 中的容器。每个 kubelet 进程都会在 API Server 上注册节点自身的信息,定期向 Master 汇报节点资源的使用情况,并通过 cAdvisor 监控容器和节点资源。

●Kube-Proxy
在每个 Node 节点上实现 Pod 网络代理,是 Kubernetes Service 资源的载体,负责维护网络规则和四层负载均衡工作。 负责写入规则至iptables、ipvs实现服务映射访问的。

Kube-Proxy 本身不是直接给 Pod 提供网络,Pod 的网络是由 Kubelet 提供的,Kube-Proxy 实际上维护的是虚拟的 Pod 集群网络。
Kube-apiserver 通过监控 Kube-Proxy 进行对 Kubernetes Service 的更新和端点的维护。

在 K8S 集群中微服务的负载均衡是由 Kube-proxy 实现的。Kube-proxy 是 K8S 集群内部的负载均衡器。它是一个分布式代理服务器,在 K8S 的每个节点上都会运行一个 Kube-proxy 组件。

●docker 或 rocket
容器引擎,运行容器,负责本机的容器创建和管理工作。

工作流程:

首先用户发出创建容器的请求通过认证后到apiserver,apiserver接受后通知controller-manager,controller-manager将容器创建的模板发回给apiserver,apiserver将模板保存在etcd中,然后通知scheduler,scheduler通过预选策略,然后优选策略,选出适合的node节点,并告知apiserver,apiserver将node节点信息保存在etcd中后,将模板和node节点信息,以及创建容器的请求发送给node节点的kubelet,kubelet收到后,下发命令给docker,docker负责创建容器。然后用户可以通过防火墙和kube-proxy来访问容器。

Kubernetes的安装部署

二进制搭建 Kubernetes v1.20   

master01:                                                 192.168.90.10
master02:                                                 192.168.90.20
node01:                                                    192.168.90.30
node02:                                                    192.168.90.40 
etcd集群节点1:                                         192.168.90.10
etcd集群节点2:                                         192.168.90.30
etcd集群节点3:                                         192.168.90.40
负载均衡nginx+keepalive01(master):  192.168.90.50
负载均衡nginx+keepalive02(backup):  192.168.90.60
VIP                 192.168.90.100 


VIP 192.168.10.100

 操作系统初始化配置


#关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
iptables -F && iptables -t nat -F && iptables -t mangle -F && iptables -X

#关闭selinux
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config

#关闭swap
swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab 

#在master添加hosts
cat >> /etc/hosts << EOF
192.168.90.10 master01
192.168.90.20 master02
192.168.90.30 node01
192.168.90.40 node02
EOF

#调整内核参数
cat > /etc/sysctl.d/k8s.conf << EOF
#开启网桥模式,可将网桥的流量传递给iptables链
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
#关闭ipv6协议
net.ipv6.conf.all.disable_ipv6=1
net.ipv4.ip_forward=1
EOF

sysctl --system

#时间同步
yum install ntpdate -y
ntpdate time.windows.com


部署 docker引擎


//所有 node 节点部署docker引擎
yum install -y yum-utils device-mapper-persistent-data lvm2 
yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo 
yum install -y docker-ce docker-ce-cli containerd.io

systemctl start docker.service
systemctl enable docker.service 


 部署 etcd 集群 

准备签发证书环境 


//在 master01 节点上操作                     

#准备cfssl证书生成工具
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/local/bin/cfssl
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -O /usr/local/bin/cfssljson
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -O /usr/local/bin/cfssl-certinfo

chmod +x /usr/local/bin/cfssl*
------------------------------------------------------------------------------------------
cfssl:证书签发的工具命令
cfssljson:将 cfssl 生成的证书(json格式)变为文件承载式证书
cfssl-certinfo:验证证书的信息
cfssl-certinfo -cert <证书名称>            #查看证书的信息
------------------------------------------------------------------------------------------

### 生成Etcd证书 ###
mkdir /opt/k8s
cd /opt/k8s/

#上传 etcd-cert.sh 和 etcd.sh 到 /opt/k8s/ 目录中
chmod +x etcd-cert.sh etcd.sh

#创建用于生成CA证书、etcd 服务器证书以及私钥的目录
mkdir /opt/k8s/etcd-cert
mv etcd-cert.sh etcd-cert/
cd /opt/k8s/etcd-cert/
./etcd-cert.sh            #生成CA证书、etcd 服务器证书以及私钥

ls

#上传 etcd-v3.4.9-linux-amd64.tar.gz 到 /opt/k8s 目录中,启动etcd服务
https://github.com/etcd-io/etcd/releases/download/v3.4.9/etcd-v3.4.9-linux-amd64.tar.gz

cd /opt/k8s/
tar zxvf etcd-v3.4.9-linux-amd64.tar.gz
ls etcd-v3.4.9-linux-amd64

------------------------------------------------------------------------------------------
etcd就是etcd 服务的启动命令,后面可跟各种启动参数
etcdctl主要为etcd 服务提供了命令行操作
------------------------------------------------------------------------------------------

#创建用于存放 etcd 配置文件,命令文件,证书的目录
mkdir -p /opt/etcd/{cfg,bin,ssl}

cd /opt/k8s/etcd-v3.4.9-linux-amd64/
mv etcd etcdctl /opt/etcd/bin/
cp /opt/k8s/etcd-cert/*.pem /opt/etcd/ssl/

cd /opt/k8s/

./etcd.sh etcd01 192.168.90.10 etcd02=https://192.168.90.30:2380,etcd03=https://192.168.90.40:2380
#进入卡住状态等待其他节点加入,这里需要三台etcd服务同时启动,如果只启动其中一台后,服务会卡在那里,直到集群中所有etcd节点都已启动,可忽略这个情况

#可另外打开一个窗口查看etcd进程是否正常
ps -ef | grep etcd

#把etcd相关证书文件、命令文件和服务管理文件全部拷贝到另外两个etcd集群节点
scp -r /opt/etcd/ root@192.168.90.30:/opt/
scp -r /opt/etcd/ root@192.168.90.40:/opt/
scp /usr/lib/systemd/system/etcd.service root@192.168.90.30:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/etcd.service root@192.168.90.40:/usr/lib/systemd/system/

//在 node01 节点上操作
vim /opt/etcd/cfg/etcd
#[Member]
ETCD_NAME="etcd02"                                            #修改
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.90.30:2380"            #修改
ETCD_LISTEN_CLIENT_URLS="https://192.168.90.30:2379"        #修改

#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.90.30:2380"        #修改
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.90.30:2379"                #修改
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.90.10:2380,etcd02=https://192.168.90.30:2380,etcd03=https://192.168.90.40:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"

#启动etcd服务
systemctl start etcd
systemctl enable etcd     ##systemctl enable --now etcd
systemctl在enable、disable、mask子命令里面增加了--now选项,可以激活同时启动服务,激活同时停止服务等。

systemctl status etcd

//在 node02 节点上操作
vim /opt/etcd/cfg/etcd
#[Member]
ETCD_NAME="etcd03"                                            #修改
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.90.40:2380"            #修改
ETCD_LISTEN_CLIENT_URLS="https://192.168.90.40:2379"        #修改

#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.90.40:2380"        #修改
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.90.40:2379"                #修改
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.90.10:2380,etcd02=https://192.168.90.30:2380,etcd03=https://192.168.90.40:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"

#启动etcd服务
systemctl start etcd
systemctl enable etcd
systemctl status etcd

#检查etcd群集状态
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.90.10:2379,https://192.168.90.30:2379,https://192.168.90.40:2379" endpoint health --write-out=table

ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.90.10:2379,https://192.168.90.30:2379,https://192.168.90.40:2379" endpoint status --write-out=table


------------------------------------------------------------------------------------------

  • ETCDCTL_API=3: 设置 etcdctl 的 API 版本为 3。
  • /opt/etcd/bin/etcdctl: etcdctl 可执行文件的路径。
  • --cacert=/opt/etcd/ssl/ca.pem: 指定根证书的路径,用于验证 etcd 服务器的身份。
  • --cert=/opt/etcd/ssl/server.pem: 指定客户端证书的路径,用于与 etcd 服务器进行安全通信。
  • --key=/opt/etcd/ssl/server-key.pem: 指定客户端私钥的路径,用于与 etcd 服务器进行安全通信。
  • --endpoints="https://192.168.90.10:2379,https://192.168.90.30:2379,https://192.168.90.40:2379": 指定 etcd 服务器的节点地址列表,以逗号分隔。
  • endpoint health --write-out=table: 执行的操作是检查 etcd 服务器节点的健康状态,并以表格形式输出结果。


------------------------------------------------------------------------------------------

#查看etcd集群成员列表
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.90.10:2379,https://192.168.90.30:2379,https://192.168.90.40:2379" --write-out=table member list


 部署 Master 组件


//在 master01 节点上操作
#上传 master.zip 和 k8s-cert.sh 到 /opt/k8s 目录中,解压 master.zip 压缩包
cd /opt/k8s/
unzip master.zip

cd master

mv apiserver.sh admin.sh controller-manager.sh scheduler.sh ..

cd ..
chmod +x *.sh

#创建kubernetes工作目录
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}

#创建用于生成CA证书、相关组件的证书和私钥的目录
mkdir /opt/k8s/k8s-cert
mv /opt/k8s/k8s-cert.sh /opt/k8s/k8s-cert
cd /opt/k8s/k8s-cert/
./k8s-cert.sh                #生成CA证书、相关组件的证书和私钥

ls *pem

#复制CA证书、apiserver相关证书和私钥到 kubernetes工作目录的 ssl 子目录中

cp ca*pem apiserver*pem /opt/kubernetes/ssl/

#上传 kubernetes-server-linux-amd64.tar.gz 到 /opt/k8s/ 目录中,解压 kubernetes 压缩包

cd /opt/k8s/

tar zxvf kubernetes-server-linux-amd64.tar.gz

cd /opt/k8s/kubernetes/server/bin

#复制master组件的关键命令文件到 kubernetes工作目录的 bin 子目录中
cp kube-apiserver kubectl kube-controller-manager kube-scheduler /opt/kubernetes/bin/
ln -s /opt/kubernetes/bin/* /usr/local/bin/

#创建 bootstrap token 认证文件,apiserver 启动时会调用,然后就相当于在集群内创建了一个这个用户,接下来就可以用 RBAC 给他授权
cd /opt/k8s/
vim token.sh
#!/bin/bash
#获取随机数前16个字节内容,以十六进制格式输出,并删除其中空格
BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ') 
#生成 token.csv 文件,按照 Token序列号,用户名,UID,用户组 的格式生成
cat > /opt/kubernetes/cfg/token.csv <<EOF
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap"
EOF

chmod +x token.sh
./token.sh

cat /opt/kubernetes/cfg/token.csv

#二进制文件、token、证书都准备好后,开启 apiserver 服务
cd /opt/k8s/
./apiserver.sh 192.168.90.10 https://192.168.90.10:2379,https://192.168.90.30:2379,https://192.168.90.40:2379

#检查进程是否启动成功

ps aux | grep kube-apiserver

netstat -natp | grep 6443   #安全端口6443用于接收HTTPS请求,用于基于Token文件或客户端证书等认证


#启动 scheduler 服务
cd /opt/k8s/
./scheduler.sh
ps aux | grep kube-scheduler

#启动 controller-manager 服务
./controller-manager.sh
ps aux | grep kube-controller-manager


#生成kubectl连接集群的kubeconfig文件
./admin.sh

#通过kubectl工具查看当前集群组件状态
kubectl get cs

#查看版本信息
kubectl version


部署 Worker Node 组件 


//在所有 node 节点上操作
#创建kubernetes工作目录
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}

#上传 node.zip 到 /opt 目录中,解压 node.zip 压缩包,获得kubelet.sh、proxy.sh
cd /opt/
unzip node.zip
chmod +x kubelet.sh proxy.sh

//在 master01 节点上操作
#把 kubelet、kube-proxy 拷贝到 node 节点
cd /opt/k8s/kubernetes/server/bin
scp kubelet kube-proxy root@192.168.90.30:/opt/kubernetes/bin/
scp kubelet kube-proxy root@192.168.90.40:/opt/kubernetes/bin/

#上传kubeconfig.sh文件到/opt/k8s/kubeconfig目录中,生成kubelet初次加入集群引导kubeconfig文件和kube-proxy.kubeconfig文件

mkdir /opt/k8s/kubeconfig

cd /opt/k8s/kubeconfig
chmod +x kubeconfig.sh
./kubeconfig.sh 192.168.90.10 /opt/k8s/k8s-cert/

#把配置文件 bootstrap.kubeconfig、kube-proxy.kubeconfig 拷贝到 node 节点
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.90.30:/opt/kubernetes/cfg/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.90.40:/opt/kubernetes/cfg/

#RBAC授权,使用户 kubelet-bootstrap 能够有权限发起 CSR 请求证书
kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap

若执行失败,可先给kubectl绑定默认cluster-admin管理员集群角色,授权集群操作权限
kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous

------------------------------------------------------------------------------------------
//在 node01 节点上操作
#启动 kubelet 服务
cd /opt/
./kubelet.sh 192.168.90.30
ps aux | grep kubelet

//在 master01 节点上操作,通过 CSR 请求
#检查到 node01 节点的 kubelet 发起的 CSR 请求,Pending 表示等待集群给该节点签发证书
kubectl get csr

#通过 CSR 请求
kubectl certificate approve node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE

#Approved,Issued 表示已授权 CSR 请求并签发证书
kubectl get csr

#查看节点,由于网络插件还没有部署,节点会没有准备就绪 NotReady
kubectl get node

//在 node01 节点上操作
#加载 ip_vs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

#启动proxy服务
cd /opt/
./proxy.sh 192.168.90.30
ps aux | grep kube-proxy


 部署 CNI 网络组件 


部署 flannel


//在 node01 节点上操作
#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
cd /opt/
docker load -i flannel.tar

mkdir /opt/cni/bin
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin

//在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
kubectl apply -f kube-flannel.yml 

kubectl get pods -n kube-system

kubectl get nodes


部署 Calico


//在 master01 节点上操作
#上传 calico.yaml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
vim calico.yaml
#修改里面定义 Pod 的网络(CALICO_IPV4POOL_CIDR),需与前面 kube-controller-manager 配置文件指定的 cluster-cidr 网段一样
    - name: CALICO_IPV4POOL_CIDR
      value: "10.244.0.0/16"        #Calico 默认使用的网段为 192.168.0.0/16
  
kubectl apply -f calico.yaml


kubectl get pods -n kube-system

#等 Calico Pod 都 Running,节点也会准备就绪
kubectl get nodes


---------- node02 节点部署 ----------
//在 node01 节点上操作
cd /opt/
scp kubelet.sh proxy.sh root@192.168.90.40:/opt/
scp -r /opt/cni root@192.168.90.40:/opt/

//在 node02 节点上操作
#启动kubelet服务
cd /opt/
chmod +x kubelet.sh
./kubelet.sh 192.168.90.40

//在 master01 节点上操作
kubectl get csr

#通过 CSR 请求 

kubectl certificate approve node-csr-dnXeGL2RtNJPVyKTWYyLYDCx35dquaRDQNVBtne1xgc
 

kubectl get csr

#加载 ipvs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done

#使用proxy.sh脚本启动proxy服务
cd /opt/
chmod +x proxy.sh
./proxy.sh 192.168.90.40

#查看群集中的节点状态
kubectl get nodes


部署 CoreDNS


CoreDNS:可以为集群中的 service 资源创建一个域名 与 IP 的对应关系解析

//在所有 node 节点上操作
#上传 coredns.tar 到 /opt 目录中
cd /opt
docker load -i coredns.tar

//在 master01 节点上操作
#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS 
cd /opt/k8s
kubectl apply -f coredns.yaml

kubectl get pods -n kube-system 

#DNS 解析测试
kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes

注:
如果出现以下报错
[root@master01 k8s]# kubectl run -it  --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
Error attaching, falling back to logs: unable to upgrade connection: Forbidden (user=system:anonymous, verb=create, resource=nodes, subresource=proxy)
Error from server (Forbidden): Forbidden (user=system:anonymous, verb=get, resource=nodes, subresource=proxy) ( pods/log sh)

需要添加 rbac的权限  直接使用kubectl绑定  clusteradmin 管理员集群角色  授权操作权限

[root@master01 k8s]# kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous
clusterrolebinding.rbac.authorization.k8s.io/cluster-system-anonymous created


---------- master02 节点部署 ----------
//从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点
scp -r /opt/etcd/ root@192.168.90.20:/opt/
scp -r /opt/kubernetes/ root@192.168.90.20:/opt
scp -r /root/.kube root@192.168.90.20:/root
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@192.168.90.20:/usr/lib/systemd/system/

//修改配置文件kube-apiserver中的IP
vim /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=false \
--v=2 \
--etcd-servers=https://192.168.90.10:2379,https://192.168.90.30:2379,https://192.168.90.40:2379 \
--bind-address=192.168.90.20 \                #修改
--secure-port=6443 \
--advertise-address=192.168.90.20 \            #修改
......

//在 master02 节点上启动各服务并设置开机自启
systemctl start kube-apiserver.service
systemctl enable kube-apiserver.service
systemctl start kube-controller-manager.service
systemctl enable kube-controller-manager.service
systemctl start kube-scheduler.service
systemctl enable kube-scheduler.service

//查看node节点状态
ln -s /opt/kubernetes/bin/* /usr/local/bin/
kubectl get nodes
kubectl get nodes -o wide          

负载均衡部署 


//配置load balancer集群双机热备负载均衡(nginx实现负载均衡,keepalived实现双机热备)
##### 在lb01、lb02节点上操作 ##### 
//配置nginx的官方在线yum源,配置本地nginx的yum源
cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOF

yum install nginx -y

//修改nginx配置文件,配置四层反向代理负载均衡,指定k8s群集2台master的节点ip和6443端口
vim /etc/nginx/nginx.conf
events {
    worker_connections  1024;
}

#添加
stream {
    log_format  main  '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';
    
    access_log  /var/log/nginx/k8s-access.log  main;

    upstream k8s-apiserver {
        server 192.168.90.10:6443;
        server 192.168.90.20:6443;
    }
    server {
        listen 6443;
        proxy_pass k8s-apiserver;
    }
}

http {
......


//检查配置文件语法
nginx -t   

//启动nginx服务,查看已监听6443端口
systemctl start nginx
systemctl enable nginx
netstat -natp | grep nginx 


//部署keepalived服务
yum install keepalived -y

//修改keepalived配置文件
vim /etc/keepalived/keepalived.conf
! Configuration File for keepalived

global_defs {
   # 接收邮件地址
   notification_email {
     acassen@firewall.loc
     failover@firewall.loc
     sysadmin@firewall.loc
   }
   # 邮件发送地址
   notification_email_from Alexandre.Cassen@firewall.loc
   smtp_server 127.0.0.1
   smtp_connect_timeout 30
   router_id NGINX_MASTER    #lb01节点的为 NGINX_MASTER,lb02节点的为 NGINX_BACKUP
}

#添加一个周期性执行的脚本
vrrp_script check_nginx {
    script "/etc/nginx/check_nginx.sh"    #指定检查nginx存活的脚本路径
}

vrrp_instance VI_1 {
    state MASTER            #lb01节点的为 MASTER,lb02节点的为 BACKUP
    interface ens33            #指定网卡名称 ens33
    virtual_router_id 51    #指定vrid,两个节点要一致
    priority 100            #lb01节点的为 100,lb02节点的为 90
    advert_int 1
    authentication {
        auth_type PASS
        auth_pass 1111
    }
    virtual_ipaddress {
        192.168.90.100/24    #指定 VIP
    }
    track_script {
        check_nginx            #指定vrrp_script配置的脚本
    }
}


//创建nginx状态检查脚本 
vim /etc/nginx/check_nginx.sh
#!/bin/bash
#egrep -cv "grep|$$" 用于过滤掉包含grep 或者 $$ 表示的当前Shell进程ID,即脚本运行的当前进程ID号
count=$(ps -ef | grep nginx | egrep -cv "grep|$$")

if [ "$count" -eq 0 ];then
    systemctl stop keepalived
fi


chmod +x /etc/nginx/check_nginx.sh

//启动keepalived服务(一定要先启动了nginx服务,再启动keepalived服务)
systemctl start keepalived
systemctl enable keepalived
ip a                #查看VIP是否生成

//修改node节点上的bootstrap.kubeconfig,kubelet.kubeconfig配置文件为VIP
cd /opt/kubernetes/cfg/
vim bootstrap.kubeconfig 
server: https://192.168.90.100:6443
                      
vim kubelet.kubeconfig
server: https://192.168.90.100:6443
                        
vim kube-proxy.kubeconfig
server: https://192.168.90.100:6443

//重启kubelet和kube-proxy服务
systemctl restart kubelet.service 
systemctl restart kube-proxy.service

//在 lb01 上查看 nginx 和 node 、 master 节点的连接状态
netstat -natp | grep nginx


##### 在 master01 节点上操作 ##### 
//测试创建pod
kubectl run nginx --image=nginx

//查看Pod的状态信息
kubectl get pods

kubectl get pods -o wide

//在对应网段的node节点上操作,可以直接使用浏览器或者curl命令访问
curl 10.244.61.1

//这时在master01节点上查看nginx日志
kubectl logs nginx


 部署 Dashboard 

//在 master01 节点上操作
#上传 recommended.yaml 文件到 /opt/k8s 目录中
cd /opt/k8s
vim recommended.yaml
#默认Dashboard只能集群内部访问,修改Service为NodePort类型,暴露到外部:
kind: Service
apiVersion: v1
metadata:
  labels:
    k8s-app: kubernetes-dashboard
  name: kubernetes-dashboard
  namespace: kubernetes-dashboard
spec:
  ports:
    - port: 443
      targetPort: 8443
      nodePort: 30001     #添加
  type: NodePort          #添加
  selector:
    k8s-app: kubernetes-dashboard

kubectl apply -f recommended.yaml

#创建service account并绑定默认cluster-admin管理员集群角色
kubectl create serviceaccount dashboard-admin -n kube-system
kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin
kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')

#使用输出的token登录Dashboard
https://NodeIP:30001

#如果出现 你的连接不是私密链接
可以尝试 直接在网页输入 thisisunsafe

Flannel,Calico,Dashboard

Flannel

K8S 中 Pod 网络通信:
●Pod 内容器与容器之间的通信
在同一个 Pod 内的容器(Pod 内的容器是不会跨宿主机的)共享同一个网络命名空间,相当于它们在同一台机器上一样,可以用 localhost 地址访问彼此的端口。

●同一个 Node 内 Pod 之间的通信
每个 Pod 都有一个真实的全局 IP 地址,同一个 Node 内的不同 Pod 之间可以直接采用对方 Pod 的 IP 地址进行通信,Pod1 与 Pod2 都是通过 Veth 连接到同一个 docker0/cni0 网桥,网段相同,所以它们之间可以直接通信。

●不同 Node 上 Pod 之间的通信
Pod 地址与 docker0 在同一网段,docker0 网段与宿主机网卡是两个不同的网段,且不同 Node 之间的通信只能通过宿主机的物理网卡进行。
要想实现不同 Node 上 Pod 之间的通信,就必须想办法通过主机的物理网卡 IP 地址进行寻址和通信。因此要满足两个条件:Pod 的 IP 不能冲突;将 Pod 的 IP 和所在的 Node 的 IP 关联起来,通过这个关联让不同 Node 上 Pod 之间直接通过内网 IP 地址通信。

Overlay Network:
叠加网络,在二层或者三层基础网络上叠加的一种虚拟网络技术模式,该网络中的主机通过虚拟链路隧道连接起来。
通过Overlay技术(可以理解成隧道技术),在原始报文外再包一层四层协议(UDP协议),通过主机网络进行路由转发。这种方式性能有一定损耗,主要体现在对原始报文的修改。目前Overlay主要采用VXLAN。

VXLAN:
将源数据包封装到UDP中,并使用基础网络的IP/MAC作为外层报文头进行封装,然后在以太网上传输,到达目的地后由隧道端点解封装并将数据发送给目标地址。

Flannel:
Flannel 的功能是让集群中的不同节点主机创建的 Docker 容器都具有全集群唯一的虚拟 IP 地址。
Flannel 是 Overlay 网络的一种,也是将 TCP 源数据包封装在另一种网络包里面进行路由转发和通信,目前支持 UDP、VXLAN、Host-gw 3种数据转发方式。

#Flannel UDP 模式的工作原理:
数据从主机 A 上 Pod 的源容器中发出后,经由所在主机的 docker0/cni0 网络接口转发到 flannel0 接口,flanneld 服务监听在 flannel0 虚拟网卡的另外一端。
Flannel 通过 Etcd 服务维护了一张节点间的路由表。源主机 A 的 flanneld 服务将原本的数据内容封装到 UDP 报文中, 根据自己的路由表通过物理网卡投递给目的节点主机 B 的 flanneld 服务,数据到达以后被解包,然后直接进入目的节点的 flannel0 接口, 之后被转发到目的主机的 docker0/cni0 网桥,最后就像本机容器通信一样由 docker0/cni0 转发到目标容器。

#ETCD 之 Flannel 提供说明:
存储管理Flannel可分配的IP地址段资源
监控 ETCD 中每个 Pod 的实际地址,并在内存中建立维护 Pod 节点路由表

由于 UDP 模式是在用户态做转发,会多一次报文隧道封装,因此性能上会比在内核态做转发的 VXLAN 模式差。

#VXLAN 模式:
VXLAN 模式使用比较简单,flannel 会在各节点生成一个 flannel.1 的 VXLAN 网卡(VTEP设备,负责 VXLAN 封装和解封装)。
VXLAN 模式下作是由内核进行的。flannel 不转发数据,仅动态设置 ARP 表和 MAC 表项。
UDP 模式的 flannel0 网卡是三层转发,使用 flannel0 时在物理网络之上构建三层网络,属于 ip in udp ;VXLAN封包与解包的工 模式是二层实现,overlay 是数据帧,属于 mac in udp 。

#Flannel VXLAN 模式跨主机的工作原理:
1、数据帧从主机 A 上 Pod 的源容器中发出后,经由所在主机的 docker0/cni0 网络接口转发到 flannel.1 接口
2、flannel.1 收到数据帧后添加 VXLAN 头部,封装在 UDP 报文中
3、主机 A 通过物理网卡发送封包到主机 B 的物理网卡中
4、主机 B 的物理网卡再通过 VXLAN 默认端口 4789 转发到 flannel.1 接口进行解封装
5、解封装以后,内核将数据帧发送到 cni0,最后由 cni0 发送到桥接到此接口的容器 B 中。

Calico

#k8s 组网方案对比:
●flannel方案
需要在每个节点上把发向容器的数据包进行封装后,再用隧道将封装后的数据包发送到运行着目标Pod的node节点上。目标node节点再负责去掉封装,将去除封装的数据包发送到目标Pod上。数据通信性能则大受影响。

●calico方案
Calico不使用隧道或NAT来实现转发,而是把Host当作Internet中的路由器,使用BGP同步路由,并使用iptables来做安全访问策略,完成跨Host转发。
采用直接路由的方式,这种方式性能损耗最低,不需要修改报文数据,但是如果网络比较复杂场景下,路由表会很复杂,对运维同事提出了较高的要求。

#Calico 主要由三个部分组成:
Calico CNI插件:主要负责与kubernetes对接,供kubelet调用使用。
Felix:负责维护宿主机上的路由规则、FIB转发信息库等。
BIRD:负责分发路由规则,类似路由器。
Confd:配置管理组件。

#Calico 工作原理:
Calico 是通过路由表来维护每个 pod 的通信。Calico 的 CNI 插件会为每个容器设置一个 veth pair 设备, 然后把另一端接入到宿主机网络空间,由于没有网桥,CNI 插件还需要在宿主机上为每个容器的 veth pair 设备配置一条路由规则, 用于接收传入的 IP 包。
有了这样的 veth pair 设备以后,容器发出的 IP 包就会通过 veth pair 设备到达宿主机,然后宿主机根据路由规则的下一跳地址, 发送给正确的网关,然后到达目标宿主机,再到达目标容器。
这些路由规则都是 Felix 维护配置的,而路由信息则是 Calico BIRD 组件基于 BGP 分发而来。
calico 实际上是将集群里所有的节点都当做边界路由器来处理,他们一起组成了一个全互联的网络,彼此之间通过 BGP 交换路由, 这些节点我们叫做 BGP Peer。

目前比较常用的CNI网络组件是flannel和calico,flannel的功能比较简单,不具备复杂的网络策略配置能力,calico是比较出色的网络管理插件,但具备复杂网络配置能力的同时,往往意味着本身的配置比较复杂,所以相对而言,比较小而简单的集群使用flannel,考虑到日后扩容,未来网络可能需要加入更多设备,配置更多网络策略,则使用calico更好。

Dashboard 介绍


仪表板是基于Web的Kubernetes用户界面。您可以使用仪表板将容器化应用程序部署到Kubernetes集群,对容器化应用程序进行故障排除,并管理集群本身及其伴随资源。您可以使用仪表板来概述群集上运行的应用程序,以及创建或修改单个Kubernetes资源(例如deployment,job,daemonset等)。例如,您可以使用部署向导扩展部署,启动滚动更新,重新启动Pod或部署新应用程序。仪表板还提供有关群集中Kubernetes资源状态以及可能发生的任何错误的信息。

Logo

K8S/Kubernetes社区为您提供最前沿的新闻资讯和知识内容

更多推荐