1.k8s集群使用GPU问题

首先需要安装 nvidia-container-runtime

yum install nvidia-container-runtime

然后修改 /etc/docker/daemon.json 文件,添加以下内容

  "default-runtime": "nvidia",
  "runtimes": {
        "nvidia": {
                "path": "/usr/bin/nvidia-container-runtime",
                "runtimeArgs": []
        }
  },

然后重新载入daemon并重启docker

systemctl daemon-reload
systemctl restart docker

最后安装 k8s插件 nvidia-device-plugin

nvidia-device-plugin.yml

# Copyright (c) 2019, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: nvidia-device-plugin-daemonset
  namespace: kube-system
spec:
  selector:
    matchLabels:
      name: nvidia-device-plugin-ds
  updateStrategy:
    type: RollingUpdate
  template:
    metadata:
      # This annotation is deprecated. Kept here for backward compatibility
      # See https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/
      annotations:
        scheduler.alpha.kubernetes.io/critical-pod: ""
      labels:
        name: nvidia-device-plugin-ds
    spec:
      tolerations:
      # This toleration is deprecated. Kept here for backward compatibility
      # See https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/
      - key: CriticalAddonsOnly
        operator: Exists
      - key: nvidia.com/gpu
        operator: Exists
        effect: NoSchedule
      # Mark this pod as a critical add-on; when enabled, the critical add-on
      # scheduler reserves resources for critical add-on pods so that they can
      # be rescheduled after a failure.
      # See https://kubernetes.io/docs/tasks/administer-cluster/guaranteed-scheduling-critical-addon-pods/
      priorityClassName: "system-node-critical"
      containers:
      - image: nvidia/k8s-device-plugin:1.11
        name: nvidia-device-plugin-ctr
        securityContext:
          allowPrivilegeEscalation: false
          capabilities:
            drop: ["ALL"]
        volumeMounts:
          - name: device-plugin
            mountPath: /var/lib/kubelet/device-plugins
      volumes:
        - name: device-plugin
          hostPath:
            path: /var/lib/kubelet/device-plugins

最后执行

kubectl create -f nvidia-device-plugin.yml

这时候集群就可以使用GPU了

2.使用hostNetwork时的dns配置

当yaml文件里面配置了pod使用hostnetwork模式时,此时pod会使用宿主机网络进行通信,集群的默认dns策略是dnsPolicy 默认为 ClusterFirst,这时候集群的pod之间的service就不能互相访问了,需要设置dns策略为ClusterFirstWithHostNet

      hostNetwork: true
      dnsPolicy: ClusterFirstWithHostNet
3.拉镜像的密钥设置

首先我们先在服务器登录一下镜像仓库

 docker login  {imageurl} //换成自己的镜像仓库地址

然后在指定的namespace创建一个密钥

kubectl create secret generic {image-secret} --from-file=.dockerconfigjson=/root/.docker/config.json  --type=kubernetes.io/dockerconfigjson -n test
Logo

K8S/Kubernetes社区为您提供最前沿的新闻资讯和知识内容

更多推荐