kubernetes(K8S)学习(九):K8S之日志监控
docker命令查看kubectl命令查看1.1.2 Pod级别当然,kubectl describe除了能够查看pod的日志信息,还能查看比如Node、RC、Service、Namespace等信 息。 注意 :要是想查看指定命名空间之下的,可以-n=namespace比如kube-apiserver、kube-schedule、kubelet、kube-proxy、kube-controlle
K8S之日志监控
一、Log and Monitor
1.1 Log
1.1.1 容器级别
docker命令查看
docker ps --->containerid
docker logs containerid --->查看容器的日志情况
kubectl命令查看
kubectl logs -f <pod-name> -c <container-name>
1.1.2 Pod级别
kubectl describe pod springboot-demo-68b89b96b6-sl8bq
当然,kubectl describe除了能够查看pod的日志信息,还能查看比如Node、RC、Service、Namespace等信
息。
注意 :要是想查看指定命名空间之下的,可以-n=namespace
1.1.3 组件服务级别
比如kube-apiserver、kube-schedule、kubelet、kube-proxy、kube-controller-manager等
可以使用journalctl进行查看
journalctl -u kubelet
1.1.4 LogPilot + ES + Kibana
部署logpilot
(1)创建log-pilot.yaml
---
apiVersion: extensions/v1beta1
kind: DaemonSet
metadata:
name: log-pilot
namespace: kube-system
labels:
k8s-app: log-pilot
kubernetes.io/cluster-service: "true"
spec:
template:
metadata:
labels:
k8s-app: log-es
kubernetes.io/cluster-service: "true"
version: v1.22
spec:
tolerations:
- key: node-role.kubernetes.io/master
effect: NoSchedule
containers:
- name: log-pilot
image: registry.cn-hangzhou.aliyuncs.com/log-monitor/log-pilot:0.9-filebeat
resources:
limits:
memory: 200Mi
requests:
cpu: 100m
memory: 200Mi
env:
- name: "FILEBEAT_OUTPUT"
value: "elasticsearch"
- name: "ELASTICSEARCH_HOST"
value: "elasticsearch-api"
- name: "ELASTICSEARCH_PORT"
value: "9200"
- name: "ELASTICSEARCH_USER"
value: "elastic"
- name: "ELASTICSEARCH_PASSWORD"
value: "changeme"
volumeMounts:
- name: sock
mountPath: /var/run/docker.sock
- name: root
mountPath: /host
readOnly: true
- name: varlib
mountPath: /var/lib/filebeat
- name: varlog
mountPath: /var/log/filebeat
securityContext:
capabilities:
add:
- SYS_ADMIN
terminationGracePeriodSeconds: 30
volumes:
- name: sock
hostPath:
path: /var/run/docker.sock
- name: root
hostPath:
path: /
- name: varlib
hostPath:
path: /var/lib/filebeat
type: DirectoryOrCreate
- name: varlog
hostPath:
path: /var/log/filebeat
type: DirectoryOrCreate
命令:
kubectl apply -f log-pilot.yaml
(2)查看pod和daemonset的信息
kubectl get pods -n kube-system
kubectl get pods -n kube-system -o wide | grep log
kubectl get ds -n kube-system
部署elasticsearch
(1)创建elasticsearch.yaml
---
apiVersion: v1
kind: Service
metadata:
name: elasticsearch-api
namespace: kube-system
labels:
name: elasticsearch
spec:
selector:
app: es
ports:
- name: transport
port: 9200
protocol: TCP
---
apiVersion: v1
kind: Service
metadata:
name: elasticsearch-discovery
namespace: kube-system
labels:
name: elasticsearch
spec:
selector:
app: es
ports:
- name: transport
port: 9300
protocol: TCP
---
apiVersion: apps/v1beta1
kind: StatefulSet
metadata:
name: elasticsearch
namespace: kube-system
labels:
kubernetes.io/cluster-service: "true"
spec:
replicas: 3
serviceName: "elasticsearch-service"
selector:
matchLabels:
app: es
template:
metadata:
labels:
app: es
spec:
tolerations:
- effect: NoSchedule
key: node-role.kubernetes.io/master
initContainers:
- name: init-sysctl
image: busybox:1.27
command:
- sysctl
- -w
- vm.max_map_count=262144
securityContext:
privileged: true
containers:
- name: elasticsearch
image: registry.cn-hangzhou.aliyuncs.com/log-monitor/elasticsearch:v5.5.1
ports:
- containerPort: 9200
protocol: TCP
- containerPort: 9300
protocol: TCP
securityContext:
capabilities:
add:
- IPC_LOCK
- SYS_RESOURCE
resources:
limits:
memory: 4000Mi
requests:
cpu: 100m
memory: 2000Mi
env:
- name: "http.host"
value: "0.0.0.0"
- name: "network.host"
value: "_eth0_"
- name: "cluster.name"
value: "docker-cluster"
- name: "bootstrap.memory_lock"
value: "false"
- name: "discovery.zen.ping.unicast.hosts"
value: "elasticsearch-discovery"
- name: "discovery.zen.ping.unicast.hosts.resolve_timeout"
value: "10s"
- name: "discovery.zen.ping_timeout"
value: "6s"
- name: "discovery.zen.minimum_master_nodes"
value: "2"
- name: "discovery.zen.fd.ping_interval"
value: "2s"
- name: "discovery.zen.no_master_block"
value: "write"
- name: "gateway.expected_nodes"
value: "2"
- name: "gateway.expected_master_nodes"
value: "1"
- name: "transport.tcp.connect_timeout"
value: "60s"
- name: "ES_JAVA_OPTS"
value: "-Xms2g -Xmx2g"
livenessProbe:
tcpSocket:
port: transport
initialDelaySeconds: 20
periodSeconds: 10
volumeMounts:
- name: es-data
mountPath: /data
terminationGracePeriodSeconds: 30
volumes:
- name: es-data
hostPath:
path: /es-data
命令:
kubectl apply -f elasticsearch.yaml
kubectl get pods -n kube-system
kubectl get pods -n kube-system -o wide | grep ela
(2)查看kube-system下的svc
kubectl get svc -n kube-system
elasticsearch-api ClusterIP 10.106.65.2 <none> 9200/TCP
elasticsearch-discovery ClusterIP 10.101.117.180 <none> 9300/TCP
kube-dns ClusterIP 10.96.0.10 <none>
(3)查看kube-system下的statefulset
kubectl get statefulset -n kube-system
NAME READY AGE
elasticsearch 3/3 106s
部署kibana
(1)创建kibana.yaml
kibana主要是对外提供访问的,所以这边需要配置Service和Ingress
前提: 要有Ingress Controller的支持,比如Nginx Controller
---
# Deployment
apiVersion: apps/v1beta1
kind: Deployment
metadata:
name: kibana
namespace: kube-system
labels:
component: kibana
spec:
replicas: 1
selector:
matchLabels:
component: kibana
template:
metadata:
labels:
component: kibana
spec:
containers:
- name: kibana
image: registry.cn-hangzhou.aliyuncs.com/log-monitor/kibana:v5.5.1
env:
- name: CLUSTER_NAME
value: docker-cluster
- name: ELASTICSEARCH_URL
value: http://elasticsearch-api:9200/
resources:
limits:
cpu: 1000m
requests:
cpu: 100m
ports:
- containerPort: 5601
name: http
---
# Service
apiVersion: v1
kind: Service
metadata:
name: kibana
namespace: kube-system
labels:
component: kibana
spec:
selector:
component: kibana
ports:
- name: http
port: 80
targetPort: http
---
# Ingress
apiVersion: extensions/v1beta1
kind: Ingress
metadata:
name: kibana
namespace: kube-system
spec:
rules:
- host: log.k8s.itcrazy2016.com
http:
paths:
- path: /
backend:
serviceName: kibana
servicePort: 80
命令:
kubectl apply -f kibana.yaml
(2)查看pod和deployment的信息
kubectl get pods -n kube-system | grep ki
kubectl get deploy -n kube-system
(3)配置Ingress需要的域名
打开windows上的hosts文件
# 注意这边是worker01的IP
121.41.10.126 kibana.jack.com
(4)在windows访问kibana.jack.com
1.2 Monitor
1.2.1 Prometheus简介
官网 :https://prometheus.io/
github :https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/prometheus
1.2.2 Prometheus架构
1.2.3 Prometheus知识普及
- 支持pull、push数据添加方式
- 支持k8s服务发现
- 提供查询语言PromQL
- 时序(time series)是由名字(Metric)以及一组key/value标签定义的
- 数据类型
1.2.4 数据采集
2.2.4.1 服务器数据
通过NodeExporter:https://github.com/prometheus/node_exporter
2.2.4.2 组件数据
ETCD:https://ip:2379/metrics
APIServer:https://ip:6443/metrics
ControllerManager:https://ip:10252/metrics
Scheduler:https://ip:10251/metrics
2.2.4.3 容器数据
1.2.5 Prometheus + Grafana
在master上创建prometheus目录
网盘/课堂源码/*.yaml
namespace.yaml
node-exporter.yaml
prometheus.yaml
grafana.yaml
ingress.yaml
(1)创建命名空间ns-monitor
namespace.yaml
apiVersion: v1
kind: Namespace
metadata:
name: ns-monitor
labels:
name: ns-monitor
命令:
kubectl apply -f namespace.yaml
kubectl get namespace
(2)创建node-exporter
node-exporter.yaml
kind: DaemonSet
apiVersion: apps/v1beta2
metadata:
labels:
app: node-exporter
name: node-exporter
namespace: ns-monitor
spec:
revisionHistoryLimit: 10
selector:
matchLabels:
app: node-exporter
template:
metadata:
labels:
app: node-exporter
spec:
containers:
- name: node-exporter
image: prom/node-exporter:v0.16.0
ports:
- containerPort: 9100
protocol: TCP
name: http
hostNetwork: true
hostPID: true
tolerations:
- effect: NoSchedule
operator: Exists
---
kind: Service
apiVersion: v1
metadata:
labels:
app: node-exporter
name: node-exporter-service
namespace: ns-monitor
spec:
ports:
- name: http
port: 9100
nodePort: 31672
protocol: TCP
type: NodePort
selector:
app: node-exporter
命令:
kubectl apply -f node-exporter.yaml
kubectl get pod -n ns-monitor
kubectl get svc -n ns-monitor
kubectl get ds -n ns-monitor
win浏览器访问集群任意一个ip,比如http://121.41.10.126:31672 查看结果 # 这边是http协议,不能用https
(3)部署prometheus pod(包含rbac认证、ConfigMap等)
创建prometheus.yaml:
注意 :记得修改prometheus.yaml文件中的ip为master的ip和path[PV需要使用到]
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRole
metadata:
name: prometheus
rules:
- apiGroups: [""] # "" indicates the core API group
resources:
- nodes
- nodes/proxy
- services
- endpoints
- pods
verbs:
- get
- watch
- list
- apiGroups:
- extensions
resources:
- ingresses
verbs:
- get
- watch
- list
- nonResourceURLs: ["/metrics"]
verbs:
- get
---
apiVersion: v1
kind: ServiceAccount
metadata:
name: prometheus
namespace: ns-monitor
labels:
app: prometheus
---
apiVersion: rbac.authorization.k8s.io/v1beta1
kind: ClusterRoleBinding
metadata:
name: prometheus
subjects:
- kind: ServiceAccount
name: prometheus
namespace: ns-monitor
roleRef:
kind: ClusterRole
name: prometheus
apiGroup: rbac.authorization.k8s.io
---
apiVersion: v1
kind: ConfigMap
metadata:
name: prometheus-conf
namespace: ns-monitor
labels:
app: prometheus
data:
prometheus.yml: |-
# my global config
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
# scrape_timeout is set to the global default (10s).
# Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets:
# - alertmanager:9093
# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
# - "first_rules.yml"
# - "second_rules.yml"
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: 'prometheus'
# metrics_path defaults to '/metrics'
# scheme defaults to 'http'.
static_configs:
- targets: ['localhost:9090']
- job_name: 'grafana'
static_configs:
- targets:
- 'grafana-service.ns-monitor:3000'
- job_name: 'kubernetes-apiservers'
kubernetes_sd_configs:
- role: endpoints
# Default to scraping over https. If required, just disable this or change to
# `http`.
scheme: https
# This TLS & bearer token file config is used to connect to the actual scrape
# endpoints for cluster components. This is separate to discovery auth
# configuration because discovery & scraping are two separate concerns in
# Prometheus. The discovery auth config is automatic if Prometheus runs inside
# the cluster. Otherwise, more config options have to be provided within the
# <kubernetes_sd_config>.
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
# If your node certificates are self-signed or use a different CA to the
# master CA, then disable certificate verification below. Note that
# certificate verification is an integral part of a secure infrastructure
# so this should only be disabled in a controlled environment. You can
# disable certificate verification by uncommenting the line below.
#
# insecure_skip_verify: true
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
# Keep only the default/kubernetes service endpoints for the https port. This
# will add targets for each API server which Kubernetes adds an endpoint to
# the default/kubernetes service.
relabel_configs:
- source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
action: keep
regex: default;kubernetes;https
# Scrape config for nodes (kubelet).
#
# Rather than connecting directly to the node, the scrape is proxied though the
# Kubernetes apiserver. This means it will work if Prometheus is running out of
# cluster, or can't connect to nodes for some other reason (e.g. because of
# firewalling).
- job_name: 'kubernetes-nodes'
# Default to scraping over https. If required, just disable this or change to
# `http`.
scheme: https
# This TLS & bearer token file config is used to connect to the actual scrape
# endpoints for cluster components. This is separate to discovery auth
# configuration because discovery & scraping are two separate concerns in
# Prometheus. The discovery auth config is automatic if Prometheus runs inside
# the cluster. Otherwise, more config options have to be provided within the
# <kubernetes_sd_config>.
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
kubernetes_sd_configs:
- role: node
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${1}/proxy/metrics
# Scrape config for Kubelet cAdvisor.
#
# This is required for Kubernetes 1.7.3 and later, where cAdvisor metrics
# (those whose names begin with 'container_') have been removed from the
# Kubelet metrics endpoint. This job scrapes the cAdvisor endpoint to
# retrieve those metrics.
#
# In Kubernetes 1.7.0-1.7.2, these metrics are only exposed on the cAdvisor
# HTTP endpoint; use "replacement: /api/v1/nodes/${1}:4194/proxy/metrics"
# in that case (and ensure cAdvisor's HTTP server hasn't been disabled with
# the --cadvisor-port=0 Kubelet flag).
#
# This job is not necessary and should be removed in Kubernetes 1.6 and
# earlier versions, or it will cause the metrics to be scraped twice.
- job_name: 'kubernetes-cadvisor'
# Default to scraping over https. If required, just disable this or change to
# `http`.
scheme: https
# This TLS & bearer token file config is used to connect to the actual scrape
# endpoints for cluster components. This is separate to discovery auth
# configuration because discovery & scraping are two separate concerns in
# Prometheus. The discovery auth config is automatic if Prometheus runs inside
# the cluster. Otherwise, more config options have to be provided within the
# <kubernetes_sd_config>.
tls_config:
ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
kubernetes_sd_configs:
- role: node
relabel_configs:
- action: labelmap
regex: __meta_kubernetes_node_label_(.+)
- target_label: __address__
replacement: kubernetes.default.svc:443
- source_labels: [__meta_kubernetes_node_name]
regex: (.+)
target_label: __metrics_path__
replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
# Scrape config for service endpoints.
#
# The relabeling allows the actual service scrape endpoint to be configured
# via the following annotations:
#
# * `prometheus.io/scrape`: Only scrape services that have a value of `true`
# * `prometheus.io/scheme`: If the metrics endpoint is secured then you will need
# to set this to `https` & most likely set the `tls_config` of the scrape config.
# * `prometheus.io/path`: If the metrics path is not `/metrics` override this.
# * `prometheus.io/port`: If the metrics are exposed on a different port to the
# service then set this appropriately.
- job_name: 'kubernetes-service-endpoints'
kubernetes_sd_configs:
- role: endpoints
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
action: replace
target_label: __scheme__
regex: (https?)
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
action: replace
target_label: __address__
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
action: replace
target_label: kubernetes_name
# Example scrape config for probing services via the Blackbox Exporter.
#
# The relabeling allows the actual service scrape endpoint to be configured
# via the following annotations:
#
# * `prometheus.io/probe`: Only probe services that have a value of `true`
- job_name: 'kubernetes-services'
metrics_path: /probe
params:
module: [http_2xx]
kubernetes_sd_configs:
- role: service
relabel_configs:
- source_labels: [__meta_kubernetes_service_annotation_prometheus_io_probe]
action: keep
regex: true
- source_labels: [__address__]
target_label: __param_target
- target_label: __address__
replacement: blackbox-exporter.example.com:9115
- source_labels: [__param_target]
target_label: instance
- action: labelmap
regex: __meta_kubernetes_service_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_service_name]
target_label: kubernetes_name
# Example scrape config for probing ingresses via the Blackbox Exporter.
#
# The relabeling allows the actual ingress scrape endpoint to be configured
# via the following annotations:
#
# * `prometheus.io/probe`: Only probe services that have a value of `true`
- job_name: 'kubernetes-ingresses'
metrics_path: /probe
params:
module: [http_2xx]
kubernetes_sd_configs:
- role: ingress
relabel_configs:
- source_labels: [__meta_kubernetes_ingress_annotation_prometheus_io_probe]
action: keep
regex: true
- source_labels: [__meta_kubernetes_ingress_scheme,__address__,__meta_kubernetes_ingress_path]
regex: (.+);(.+);(.+)
replacement: ${1}://${2}${3}
target_label: __param_target
- target_label: __address__
replacement: blackbox-exporter.example.com:9115
- source_labels: [__param_target]
target_label: instance
- action: labelmap
regex: __meta_kubernetes_ingress_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_ingress_name]
target_label: kubernetes_name
# Example scrape config for pods
#
# The relabeling allows the actual pod scrape endpoint to be configured via the
# following annotations:
#
# * `prometheus.io/scrape`: Only scrape pods that have a value of `true`
# * `prometheus.io/path`: If the metrics path is not `/metrics` override this.
# * `prometheus.io/port`: Scrape the pod on the indicated port instead of the
# pod's declared ports (default is a port-free target if none are declared).
- job_name: 'kubernetes-pods'
kubernetes_sd_configs:
- role: pod
relabel_configs:
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_scrape]
action: keep
regex: true
- source_labels: [__meta_kubernetes_pod_annotation_prometheus_io_path]
action: replace
target_label: __metrics_path__
regex: (.+)
- source_labels: [__address__, __meta_kubernetes_pod_annotation_prometheus_io_port]
action: replace
regex: ([^:]+)(?::\d+)?;(\d+)
replacement: $1:$2
target_label: __address__
- action: labelmap
regex: __meta_kubernetes_pod_label_(.+)
- source_labels: [__meta_kubernetes_namespace]
action: replace
target_label: kubernetes_namespace
- source_labels: [__meta_kubernetes_pod_name]
action: replace
target_label: kubernetes_pod_name
---
apiVersion: v1
kind: ConfigMap
metadata:
name: prometheus-rules
namespace: ns-monitor
labels:
app: prometheus
data:
cpu-usage.rule: |
groups:
- name: NodeCPUUsage
rules:
- alert: NodeCPUUsage
expr: (100 - (avg by (instance) (irate(node_cpu{name="node-exporter",mode="idle"}[5m])) * 100)) > 75
for: 2m
labels:
severity: "page"
annotations:
summary: "{{$labels.instance}}: High CPU usage detected"
description: "{{$labels.instance}}: CPU usage is above 75% (current value is: {{ $value }})"
---
apiVersion: v1
kind: PersistentVolume
metadata:
name: "prometheus-data-pv"
labels:
name: prometheus-data-pv
release: stable
spec:
capacity:
storage: 5Gi
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Recycle
nfs:
path: /nfs/data/prometheus
server: 121.41.10.13
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: prometheus-data-pvc
namespace: ns-monitor
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 5Gi
selector:
matchLabels:
name: prometheus-data-pv
release: stable
---
kind: Deployment
apiVersion: apps/v1beta2
metadata:
labels:
app: prometheus
name: prometheus
namespace: ns-monitor
spec:
replicas: 1
revisionHistoryLimit: 10
selector:
matchLabels:
app: prometheus
template:
metadata:
labels:
app: prometheus
spec:
serviceAccountName: prometheus
securityContext:
runAsUser: 0
containers:
- name: prometheus
image: prom/prometheus:latest
imagePullPolicy: IfNotPresent
volumeMounts:
- mountPath: /prometheus
name: prometheus-data-volume
- mountPath: /etc/prometheus/prometheus.yml
name: prometheus-conf-volume
subPath: prometheus.yml
- mountPath: /etc/prometheus/rules
name: prometheus-rules-volume
ports:
- containerPort: 9090
protocol: TCP
volumes:
- name: prometheus-data-volume
persistentVolumeClaim:
claimName: prometheus-data-pvc
- name: prometheus-conf-volume
configMap:
name: prometheus-conf
- name: prometheus-rules-volume
configMap:
name: prometheus-rules
tolerations:
- key: node-role.kubernetes.io/master
effect: NoSchedule
---
kind: Service
apiVersion: v1
metadata:
annotations:
prometheus.io/scrape: 'true'
labels:
app: prometheus
name: prometheus-service
namespace: ns-monitor
spec:
ports:
- port: 9090
targetPort: 9090
selector:
app: prometheus
type: NodePort
命令:
kubectl apply -f grafana.yaml
kubectl get pod -n ns-monitor
kubectl get svc -n ns-monitor
win浏览器访问集群任意一个ip:32405/graph/login
比如http://121.41.10.126:32727用户名密码:admin
(5)增加域名访问[没有域名好像没有灵魂]
创建ingress.yaml
前提 :配置好ingress controller和域名解析
apiVersion: v1
kind: PersistentVolume
metadata:
name: "grafana-data-pv"
labels:
name: grafana-data-pv
release: stable
spec:
capacity:
storage: 5Gi
accessModes:
- ReadWriteOnce
persistentVolumeReclaimPolicy: Recycle
nfs:
path: /nfs/data/grafana
server: 121.41.10.13
---
apiVersion: v1
kind: PersistentVolumeClaim
metadata:
name: grafana-data-pvc
namespace: ns-monitor
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 5Gi
selector:
matchLabels:
name: grafana-data-pv
release: stable
---
kind: Deployment
apiVersion: apps/v1beta2
metadata:
labels:
app: grafana
name: grafana
namespace: ns-monitor
spec:
replicas: 1
revisionHistoryLimit: 10
selector:
matchLabels:
app: grafana
template:
metadata:
labels:
app: grafana
spec:
securityContext:
runAsUser: 0
containers:
- name: grafana
image: grafana/grafana:latest
imagePullPolicy: IfNotPresent
env:
- name: GF_AUTH_BASIC_ENABLED
value: "true"
- name: GF_AUTH_ANONYMOUS_ENABLED
value: "false"
readinessProbe:
httpGet:
path: /login
port: 3000
volumeMounts:
- mountPath: /var/lib/grafana
name: grafana-data-volume
ports:
- containerPort: 3000
protocol: TCP
volumes:
- name: grafana-data-volume
persistentVolumeClaim:
claimName: grafana-data-pvc
---
kind: Service
apiVersion: v1
metadata:
labels:
app: grafana
name: grafana-service
namespace: ns-monitor
spec:
ports:
- port: 3000
targetPort: 3000
selector:
app: grafana
type: NodePort
命令:
kubectl apply -f ingress.yaml
kubectl get ingress -n ns-monitor
kubectl describe ingress -n ns-monitor
(6)直接通过域名访问即可
二、Trouble Shooting(问题排查)
2.1 Master
master上的组件共同组成了控制平面
01 若apiserver出问题了
会导致整个K8s集群不可以使用,因为apiserver是K8s集群的大脑
02 若etcd出问题了
apiserver和etcd则无法通信,kubelet也无法更新所在node上的状态
03 当scheduler或者controller manager出现问题时
会导致deploy,pod,service等无法正常运行
解决方案 : 出现问题时,监听到自动重启或者搭建高可用的master集群
2.2 Worker
worker节点挂掉或者上面的kubelet服务出现问题时,w上的pod则无法正常运行。
2.3 Addons
dns和网络插件比如calico发生问题时,集群内的网络无法正常通信,并且无法根据服务名称进行解析。
2.4 系统问题排查
查看Node的状态
kubectl get nodes
kubectl describe node-name
查看集群master和worker组件的日志
journalctl -u apiserver
journalctl -u scheduler
journalctl -u kubelet
journalctl -u kube-proxy
...
2.5 Pod的问题排查
K8s中最小的操作单元是Pod,最重要的操作也是Pod,其他资源的排查可以参照Pod问题的排查
(1)查看Pod运行情况
kubectl get pods -n namespace
(2)查看Pod的具体描述,定位问题
kubectl describe pod pod-name -n namespace
(3)检查Pod对应的yaml是否有误
kubectl get pod pod-name -o yaml
(4)查看Pod日志
kubectl logs ...
Pod可能会出现哪些问题及解决方案
01 处于Pending状态
说明Pod还没有被调度到某个node上,可以describe一下详情。可能因为资源不足,端口被占用等。
02 处于Waiting/ContainerCreating状态
可能因为镜像拉取失败,或者是网络插件的问题,比如calico,或者是容器本身的问题,可以检查一下容器的yaml文
件内容和Dockerfile的书写。
03 处于ImagePullBackOff状态
镜像拉取失败,可能是镜像不存在,或者没有权限拉取。
04 处于CrashLoopBackOff状态
Pod之前启动成功过,但是又失败了,不断在重启。
05 处于Error状态
有些内容不存在,比如ConfigMap,PV,没有权限等,需要创建一下。
06 处于Terminating状态
说明Pod正在停止
07 处于Unknown状态
说明K8s已经失去对Pod的管理监听。
更多推荐
所有评论(0)