SLAM算法评测工具——开源工具EVO(以VINS为例)
EVO开源库的下载安装和基本使用入门的相关介绍。
EVO库是一个很方便的开源库(Python package for the evaluation of odometry and SLAM),
evo是一个很好的测评工具,它可以根据时间戳将轨迹进行对齐,同时可以将不同尺度的轨迹按照你指定的标准轨迹进行拉伸对齐,并可以算出均方差等评定参数,用于测评slam算法性能。
下载:
github链接:https://github.com/MichaelGrupp/evo
与其他公共基准测试工具相比,evo 有几个优势:
- 不同格式的通用工具 用于单目 SLAM 等的关联、对齐、比例调整的算法选项。
- 灵活的输出、绘图或导出选项(例如 LaTeX 绘图或 Excel 表格)
- 一个强大的、可配置的 CLI,可以涵盖许多用例
- 用于自定义扩展的模块化核心和工具库
- 比其他已建立的基于 Python 的工具更快(参见此处)
主要有如下几个常用命令:
从源码安装
git clone https://github.com/MichaelGrupp/evo.git
cd evo
pip install --editable . --upgrade --no-binary evo
案例:
cd test/data
evo_traj kitti KITTI_00_ORB.txt KITTI_00_SPTAM.txt --ref=KITTI_00_gt.txt -p --plot_mode=xz
自己的使用记录
运行了VINS-mono和PL-vins 对比了一组在开源数据集EuRoC下的结果,大概步骤是先 各自把程序运行结果利用 evo_traj tum 改为统一的 .tum格式,
再利用 evo_ape tum 把两组结果放在一个图里对比误差情况。
具体步骤如下:
数据格式(data formal):TUM/EuRoC/Kitti数据集
格式转换
1、 TUM数据集格式
2、 EuRoC数据集格式
3、 KITTI数据集格式
修改VINS-mono轨迹保存代码
由于VINS-Mono保存的轨迹格式与EVO所使用的格式不同,VISNmono输出的轨迹格式不符合tum数据集和euroc数据集的格式。因此需要对源代码就行修改,更改保存轨迹的格式。(如果只有一条轨迹也可以直接需要输出的csv文件,但是如果要反复评估一个算法的话,比如运行10次求平均值,这样还是修改源代码方便一点)
修改下列两个文件,共计3个地方
1.vins_estimator/src/utility/visualization.cpp
2.pose_graph/src/pose_graph.cpp
修改 visualization.cpp
找到以下代码段
// write result to file
ofstream foutC(VINS_RESULT_PATH, ios::app);
foutC.setf(ios::fixed, ios::floatfield);
foutC.precision(0);
foutC << header.stamp.toSec() * 1e9 << ",";
foutC.precision(5);
foutC << estimator.Ps[WINDOW_SIZE].x() << ","
<< estimator.Ps[WINDOW_SIZE].y() << ","
<< estimator.Ps[WINDOW_SIZE].z() << ","
<< tmp_Q.w() << ","
<< tmp_Q.x() << ","
<< tmp_Q.y() << ","
<< tmp_Q.z() << ","
<< estimator.Vs[WINDOW_SIZE].x() << ","
<< estimator.Vs[WINDOW_SIZE].y() << ","
<< estimator.Vs[WINDOW_SIZE].z() << "," << endl;
修改代码为:
// write result to file
ofstream foutC(VINS_RESULT_PATH, ios::app);
foutC.setf(ios::fixed, ios::floatfield);
foutC.precision(9);
foutC << header.stamp.toSec() << " ";
foutC.precision(5);
foutC << estimator.Ps[WINDOW_SIZE].x() << " "
<< estimator.Ps[WINDOW_SIZE].y() << " "
<< estimator.Ps[WINDOW_SIZE].z() << " "
<< tmp_Q.x() << " "
<< tmp_Q.y() << " "
<< tmp_Q.z() << " "
<< tmp_Q.w() << endl;
//<< estimator.Vs[WINDOW_SIZE].x() << ","
//<< estimator.Vs[WINDOW_SIZE].y() << ","
//<< estimator.Vs[WINDOW_SIZE].z() << "," << endl;
foutC.close();
修改 pose_graph.cpp
1) 在路径 /pose_graph/src/pose_graph.cpp 在函数 addKeyFrame() 中 找到以下代码段
if (SAVE_LOOP_PATH)
{
ofstream loop_path_file(VINS_RESULT_PATH, ios::app);
loop_path_file.setf(ios::fixed, ios::floatfield);
loop_path_file.precision(0);
loop_path_file << cur_kf->time_stamp * 1e9 << ",";
loop_path_file.precision(5);
loop_path_file << P.x() << ","
<< P.y() << ","
<< P.z() << ","
<< Q.w() << ","
<< Q.x() << ","
<< Q.y() << ","
<< Q.z() << ","
<< endl;
loop_path_file.close();
}
修改为:
if (SAVE_LOOP_PATH)
{
ofstream loop_path_file(VINS_RESULT_PATH, ios::app);
loop_path_file.setf(ios::fixed, ios::floatfield);
loop_path_file.precision(9);
loop_path_file << cur_kf->time_stamp << " ";
loop_path_file.precision(5);
loop_path_file << P.x() << " "
<< P.y() << " "
<< P.z() << " "
<< Q.x() << " "
<< Q.y() << " "
<< Q.z() << " "
<< Q.w() << endl;
loop_path_file.close();
}
2) 在路径 /pose_graph/src/pose_graph.cpp 在函数 updatePath() 中 找到以下代码段
if (SAVE_LOOP_PATH)
{
ofstream loop_path_file(VINS_RESULT_PATH, ios::app);
loop_path_file.setf(ios::fixed, ios::floatfield);
loop_path_file.precision(0);
loop_path_file << (*it)->time_stamp * 1e9 << ",";
loop_path_file.precision(5);
loop_path_file << P.x() << ","
<< P.y() << ","
<< P.z() << ","
<< Q.w() << ","
<< Q.x() << ","
<< Q.y() << ","
<< Q.z() << ","
<< endl;
loop_path_file.close();
}
修改为:
if (SAVE_LOOP_PATH)
{
ofstream loop_path_file(VINS_RESULT_PATH, ios::app);
loop_path_file.setf(ios::fixed, ios::floatfield);
loop_path_file.precision(9);
loop_path_file << (*it)->time_stamp << " ";
loop_path_file.precision(5);
loop_path_file << P.x() << " "
<< P.y() << " "
<< P.z() << " "
<< Q.x() << " "
<< Q.y() << " "
<< Q.z() << " "
<< Q.w() << endl;
loop_path_file.close();
}
修改VINS-mono运行参数
在路径 VINS-Mono/config/euroc 下有配置文件 euroc_config.yaml
output_path: 设置轨迹保存位置
pose_graph_save_path 设置位姿图保存位置
loop_closure: 0 表示不使用回环 1表示使用回环
estimate_td: 0表示不估计传感器之间的延时 1表示启动
运行代码获得轨迹信息
roscore
roslaunch vins_estimator euroc.launch
roslaunch vins_estimator vins_rviz.launch
rosbag play MH_01_easy.bag
本文以VINS为例子介绍如何使用evo评估其在Euroc数据集上的效果。数据集网站:The EuRoC MAV Dataset。数据集采用MH_01_easy.bag。
euroc的评估支持 .csv的groudtruth 和 tum 格式的轨迹文件. 虽然我们使用的是euroc数据集,但evo只支持tum格式的绘制,它提供了euroc格式转tum格式的工具。 首先我们打开数据集的state_groundtruth_estimate0/文件夹,会发现有一个文件: data.csv。这是一个euroc格式的文件,我们首先要把他转成tum格式。输入以下命令:
evo_traj euroc data.csv --save_as_tum
生成data.tum
evo评测
单条轨迹
首先设置回环(loop_closure: 1),重载地图(load_previous_pose_graph: 0),快速定位(fast_relocalization: 0)。
经过我们上面的修改,该文件是符合tum格式的轨迹输出以及数据集提供的真值state_groundtruth_estimate0/data.csv(由下载的zip格式的数据解压得到)。
使用evo_traj 显示轨迹
首先我们可以使用 evo_traj将轨迹画出来。
~/vins-mono/output_pose_graph$ evo_traj tum vins_result_no_loop.csv -p --plot_mode=xyz
使用evo_ape(地图用颜色深浅表示)确定轨迹绝对位姿误差
evo_ape euroc data.csv vins_result_no_loop.csv -va --plot --plot_mode xyz --save_results a.zip
终端输出:
Synchronizing trajectories...
Found 1817 of max. 1828 possible matching timestamps between...
data.csv
and: vins_result_no_loop.csv
..with max. time diff.: 0.01 (s) and time offset: 0.0 (s).
--------------------------------------------------------------------------------
Aligning using Umeyama's method...
Rotation of alignment:
[[-0.88919506 -0.45728639 0.01487636]
[ 0.45736642 -0.88927532 0.00231603]
[ 0.01217009 0.00886335 0.99988666]]
Translation of alignment:
[ 4.58596346 -1.65593626 0.77392133]
Scale correction: 1.0
--------------------------------------------------------------------------------
Compared 1817 absolute pose pairs.
Calculating APE for translation part pose relation...
--------------------------------------------------------------------------------
APE w.r.t. translation part (m)
(with SE(3) Umeyama alignment)
max 0.349640
mean 0.144082
median 0.140714
min 0.034372
rmse 0.154602
sse 43.429475
std 0.056053
多条轨迹
同时显示回环轨迹和真值轨迹:
evo_traj tum vins_result_loop.txt --ref=data.tum -p --plot_mode=xyz --align --correct_scale
evo还可以将两个结果放在一个图中,进行对比。参数中的两个zip文件就是刚刚前面生成的。
evo_res a.zip b.zip -p --save_table table.csv
这就是上面举例子里面放的那一类图,可以用来评测各个不同的SLAM算法的好坏。
更多推荐
所有评论(0)