本文深入解析了大模型智能体的本质与框架封装机制。智能体基于大模型的函数调用功能构建,框架则是对这些原生能力的封装优化。重点介绍了Langgraph框架的核心要素:State(状态)、Nodes(节点)和Edges(边)。节点执行工作,边决定流向,State传递参数。框架支持顺序与并行节点执行,通过状态图保存中间结果,确保智能体可中断恢复。


智能体的基础是大模型的函数调用,而框架只是对其能力的封装。

我们首先要明确一个概念,即智能体是基于大模型应用设计的一套机制,其本质是大模型提供的函数调用功能(function call),包括现在的MCP服务;而框架只是对这些原生能力的封装,便于开发人员进行功能开发,而不用去处理太多细节性问题。

所以,在做大模型开发时,虽然要学好框架的使用,但更重要的是要搞明白智能体的运行机制,已经框架在其上做了哪些完善和增强。

Langgraph框架的运作流程

在Langgraph中的核心概念主要有三个——State(状态),Nodes(节点),Edges(边);其中状态的主要载体是StateGraph状态图,其作用是一个全局变量,用来保存智能体执行过程中的数据;而节点是一个个功能节点,比如说模型节点,工具节点等;而边应该叫做条件边,意思是根据边来判断下一个应该执行哪个节点。

简而言之:节点完成工作,边告诉下一步做什么,而State在节点和边中传递参数。

因此,Langgraph开发的智能体是一个基于节点和边为主体的整体,而其有两个特殊节点——start开始节点和end结束节点;所谓的开始节点是只智能体的入口,而结束节点是智能体的终止节点,其它节点则都属于功能节点。

在我们开发一个智能体的过程中,首先我们要指定开始节点和结束节点,然后再根据功能需求填充功能节点。

如下,添加节点和边,并编译图:

其中节点的执行过程是顺序的以及并行的,顺序的是指一个节点执行完毕之后,并把执行结果保存到State中;然后根据边再执行下一个节点或多个节点;之所以又是并行的原因是因为,一个节点执行完成之后可以根据边执行一个或多个下一个节点。

这里说起来可能有点绕,但Langgraph中确实支持多节点执行。

边定义了逻辑如何路由以及图如何决定停止。这是代理工作以及不同节点如何相互通信的重要组成部分

在Langgraph中边有多种类型,主要包括以下几种:

  • 普通边:直接从一个节点到下一个节点。
  • 条件边:调用一个函数来确定接下来要前往哪个(或哪些)节点。
  • 入口点:当用户输入到达时,首先调用哪个节点。
  • 条件入口点:调用一个函数来确定当用户输入到达时,首先调用哪个(或哪些)节点。

一个节点可以有多个出边。如果一个节点有多个出边,所有这些目标节点将在下一个超级步骤中并行执行,这就是可以多节点执行的原因。

Langgraph之所以强大的原因,还在于StateGraph状态图中,原因是因为在状态图中可以保存节点执行的所有中间结果;这样当智能体由于某种原因被迫中断时,依然可以根据状态图中的执行结果,随时恢复到当时的运行状态。

读者福利大放送:如果你对大模型感兴趣,想更加深入的学习大模型**,那么这份精心整理的大模型学习资料,绝对能帮你少走弯路、快速入门**

如果你是零基础小白,别担心——大模型入门真的没那么难,你完全可以学得会

👉 不用你懂任何算法和数学知识,公式推导、复杂原理这些都不用操心;
👉 也不挑电脑配置,普通家用电脑完全能 hold 住,不用额外花钱升级设备;
👉 更不用你提前学 Python 之类的编程语言,零基础照样能上手。

你要做的特别简单:跟着我的讲解走,照着教程里的步骤一步步操作就行。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

现在这份资料免费分享给大家,有需要的小伙伴,直接VX扫描下方二维码就能领取啦😝↓↓↓
在这里插入图片描述

为什么要学习大模型?

数据显示,2023 年我国大模型相关人才缺口已突破百万,这一数字直接暴露了人才培养体系的严重滞后与供给不足。而随着人工智能技术的飞速迭代,产业对专业人才的需求将呈爆发式增长,据预测,到 2025 年这一缺口将急剧扩大至 400 万!!
在这里插入图片描述

大模型学习路线汇总

整体的学习路线分成L1到L4四个阶段,一步步带你从入门到进阶,从理论到实战,跟着学习路线一步步打卡,小白也能轻松学会!
在这里插入图片描述

大模型实战项目&配套源码

光学理论可不够,这套学习资料还包含了丰富的实战案例,让你在实战中检验成果巩固所学知识
在这里插入图片描述

大模型学习必看书籍PDF

我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。
在这里插入图片描述

大模型超全面试题汇总

在面试过程中可能遇到的问题,我都给大家汇总好了,能让你们在面试中游刃有余
在这里插入图片描述

这些资料真的有用吗?

这份资料由我和鲁为民博士(北京清华大学学士和美国加州理工学院博士)共同整理,现任上海殷泊信息科技CEO,其创立的MoPaaS云平台获Forrester全球’强劲表现者’认证,服务航天科工、国家电网等1000+企业,以第一作者在IEEE Transactions发表论文50+篇,获NASA JPL火星探测系统强化学习专利等35项中美专利。本套AI大模型课程由清华大学-加州理工双料博士、吴文俊人工智能奖得主鲁为民教授领衔研发。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的技术人员,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
在这里插入图片描述
👉获取方式

😝有需要的小伙伴,可以保存图片到VX扫描下方二维码免费领取【保证100%免费】
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最适合零基础的!!

Logo

更多推荐