2018年SCI论文--整合GEO数据挖掘完整复现 五 :RobustRankAggreg(RRA)整合四个GSE数据集的差异基因,筛选共同差异基因
文章目录论文地址四个GSE数据集差异表达基因(按logFC值排序)并为一个list,正序倒序各一个list所有差异基因在四个GSE数据集中logFC矩阵筛选共同上调基因筛选共同下调基因合并共同上下调基因logFC.tiff论文地址四个GSE数据集差异表达基因(按logFC值排序)并为一个list,正序倒序各一个listsetwd("./2.RobustRankAggreg_analysis"...
·
文章目录
论文地址
四个GSE数据集差异表达基因(按logFC值排序)并为一个list,正序倒序各一个list
setwd("./2.RobustRankAggreg_analysis")
padj=0.05
logFC=1
files=c("GSE7476_limmaTab.txt","GSE13507_limmaTab.txt","GSE37815_limmaTab.txt","GSE65635_limmaTab.txt")
upList=list()
downList=list()
allFCList=list()
for(i in 1:length(files)){
inputFile=files[i]
rt=read.table(inputFile,header=T,sep = '\t',quote = '') # 注意文件读取
header=unlist(strsplit(inputFile,"_"))
downList[[header[1]]]=as.vector(rt[,1])
upList[[header[1]]]=rev(as.vector(rt[,1]))
fcCol=rt[,1:2]
colnames(fcCol)=c("Gene",header[[1]])
allFCList[[header[1]]]=fcCol
}
所有差异基因在四个GSE数据集中logFC矩阵
mergeLe=function(x,y){
merge(x,y,by="Gene",all=T)}
newTab=Reduce(mergeLe,allFCList)
rownames(newTab)=newTab[,1]
newTab=newTab[,2:ncol(newTab)]
newTab[is.na(newTab)]=0
筛选共同上调基因
library(RobustRankAggreg)
upMatrix = rankMatrix(upList)
upAR = aggregateRanks(rmat=upMatrix)
colnames(upAR)=c("Name","Pvalue")
upAdj=p.adjust(upAR$Pvalue,method="bonferroni")
upXls=cbind(upAR,adjPvalue=upAdj)
upFC=newTab[as.vector(upXls[,1]),]
upXls=cbind(upXls,logFC=rowMeans(upFC))
write.table(upXls,file="up.xls",sep="\t",quote=F,row.names=F)
upSig=upXls[(upXls$adjPvalue<padj & upXls$logFC>logFC),]
write.table(upSig,file="upSig.xls",sep="\t",quote=F,row.names=F)
筛选共同下调基因
downMatrix = rankMatrix(downList)
downAR = aggregateRanks(rmat=downMatrix)
colnames(downAR)=c("Name","Pvalue")
downAdj=p.adjust(downAR$Pvalue,method="bonferroni")
downXls=cbind(downAR,adjPvalue=downAdj)
downFC=newTab[as.vector(downXls[,1]),]
downXls=cbind(downXls,logFC=rowMeans(downFC))
write.table(downXls,file="down.xls",sep="\t",quote=F,row.names=F)
downSig=downXls[(downXls$adjPvalue<padj & downXls$logFC< -logFC),]
write.table(downSig,file="downSig.xls",sep="\t",quote=F,row.names=F)
合并共同上下调基因
allSig = rbind(upSig,downSig)
colnames(allSig)
allSig = allSig[,c("Name","logFC")]
write.table(allSig,file = 'allSign.xls',sep = '\t',quote = F)
logFC.tiff
hminput=newTab[c(as.vector(upSig[1:20,1]),as.vector(downSig[1:20,1])),]
library(pheatmap)
tiff(file="logFC.tiff",width = 15,height = 20,units ="cm",compression="lzw",bg="white",res=400)
pheatmap(hminput,display_numbers = TRUE,
fontsize_row=10,
fontsize_col=12,
color = colorRampPalette(c("green", "white", "red"))(50),
cluster_cols = FALSE,cluster_rows = FALSE, )
dev.off()
本博客内容将同步更新到个人微信公众号:生信玩家。欢迎大家关注~~~
点击阅读全文
更多推荐
7日热学榜
活动日历
查看更多
活动时间 2025-01-01 00:00:00

丁奇:MySQL高频面试题详解
活动时间 2025-01-01 00:00:00

AI 大模型应用开发 · 实战营
活动时间 2025-01-01 00:00:00

AI系列课程-IT全学科自学科
活动时间 2025-01-01 00:00:00

3 小时掌握 Prompt 核心技巧与 GPT 技术理论
活动时间 2025-01-01 00:00:00

0基础2个月拿下软考高级证书体验课
目录
所有评论(0)