信号处理算法(2):样本熵(SampEn)
·
本文主要介绍样本熵的物理意义、算法以及Matlab里代码实现。
1.物理意义
样本熵(Sample Entropy,SampEn)与近似熵的物理意义相似(近似熵参见博客【近似熵理论相关知识与代码实现】),都是通过度量信号中产生新模式的概率大小来衡量时间序列复杂性,新模式产生的概率越大,序列的复杂性就越大。
与近似熵相比,样本熵具有两个优势:样本熵的计算不依赖数据长度;样本熵具有更好的一致性,即参数m和r的变化对样本熵的影响程度是相同的。
样本熵的值越低,序列自我相似性就越高;样本熵的值越大,样本序列就越复杂。目前样本熵在评估生理时间序列(EEG,sEMG等)的复杂性和诊断病理状态等方面均有应用。
2.计算方法
样本熵的计算方法如下:

3.代码实现
在Matlab里实现样本熵函数,计算一段时间序列的样本熵值,代码如下:
function SampEnVal = SampEn(data, m, r)
% SampEn 计算时间序列data的样本熵
% 输入:data是数据一维行向量
% m重构维数,一般选择1或2,优先选择2,一般不取m>2
% r 阈值大小,一般选择r=0.1~0.25*Std(data)
% 输出:SampEnVal样本熵值大小
data = data(:)';
N = length(data);
Nkx1 = 0;
Nkx2 = 0;
for k = N - m:-1:1
x1(k, :) = data(k:k + m - 1);
x2(k, :) = data(k:k + m);
end
for k = N - m:-1:1
x1temprow = x1(k, :);
x1temp = ones(N - m, 1)*x1temprow;
dx1(k, :) = max(abs(x1temp - x1), [], 2)';
Nkx1 = Nkx1 + (sum(dx1(k, :) < r) - 1)/(N - m - 1);
x2temprow = x2(k, :);
x2temp = ones(N - m, 1)*x2temprow;
dx2(k, :) = max(abs(x2temp - x2), [], 2)';
Nkx2 = Nkx2 + (sum(dx2(k, :) < r) - 1)/(N - m - 1);
end
Bmx1 = Nkx1/(N - m);
Bmx2 = Nkx2/(N - m);
SampEnVal = -log(Bmx2/Bmx1);
end
包含更详细注释的代码,可以点击这里下载【样本熵Matlab函数】
enjoy!
推荐内容
更多推荐
相关推荐
查看更多
A2A

谷歌开源首个标准智能体交互协议Agent2Agent Protocol(A2A)
adk-python

一款开源、代码优先的Python工具包,用于构建、评估和部署灵活可控的复杂 AI agents
Second-Me

开源 AI 身份系统,通过本地训练和部署,模仿用户思维和学习风格,创建专属AI替身,保护隐私安全。
热门开源项目
活动日历
查看更多
直播时间 2025-04-09 14:34:18

樱花限定季|G-Star校园行&华中师范大学专场
直播时间 2025-04-07 14:51:20

樱花限定季|G-Star校园行&华中农业大学专场
直播时间 2025-03-26 14:30:09

开源工业物联实战!
直播时间 2025-03-25 14:30:17

Heygem.ai数字人超4000颗星火燎原!
直播时间 2025-03-13 18:32:35

全栈自研企业级AI平台:Java核心技术×私有化部署实战
所有评论(0)