先吐槽一下这个基于theano的keras有多难装,反正我是在windows下折腾到不行,所以自己装了一个双系统。这才感到linux系统的强大之初,难怪大公司都是用这个做开发,妹的,谁用谁知道啊!!!! 
   先来介绍一下这个框架:我们都知道深度的神经网络,Python一开始有theano这个框架用来写神经网络,不过后来我们发现keras这个比theano更加容易构建,很适合初学者。×..× 
   以下是对应的英文网站:http://keras.io/#installation,英文好的话自己都可以看懂了。

一:先看安装

有两种: 
1.ubuntu下直接用 sudo pip install keras 安装 
2.又或者先安装以下的依赖项:

numpy, scipy
pyyaml
Theano
HDF5 and h5py

Once you have the dependencies installed, clone the repo:

git clone https://github.com/fchollet/keras.git

二.模块简介

1.optimizers: 
这个是用来选用优化方法的,里面有SGD,Adagrad,Adadelta,RMSprop,Adam可选

2.objectives 这个定义了用什么形式的误差来优化,有 
mean_squared_error / mse:平均方差 
mean_absolute_error / mae:绝对误差 
mean_absolute_percentage_error / mape:平均绝对百分差 
mean_squared_logarithmic_error / msle:对数误差 
squared_hinge 
hinge 
binary_crossentropy: Also known as logloss. 
categorical_crossentropy:使用这个目标函数需要设置label为二进制数组的形式。

3.model 
model = keras.models.Sequential() 初始化一个神经网络 
add 添加一层神经网 
compile(optimizer, loss, class_mode=”categorical”): 
参数: 
optimizer: str (优化函数的名称) 或者优化对象.参考 optimizers. 
loss: str (目标函数的名称) 或者目标函数. 参考 objectives. 
class_mode: 值为”categorical”, “binary”. 用于计算分类正确率或调用 predict_classes方法. 
theano_mode: A theano.compile.mode.Mode (reference). 
fit(X, y, batch_size=128, nb_epoch=100, verbose=1, validation_split=0., validation_data =None, shuffle=True, show_accuracy=False): 固定的 epochs训练一个模型. 
返回值:记录在字典中的训练成功的损失值,也可是验证损失值或精确度(适用的话). 
参数: 
X: data. 
y: labels. 
batch_size: int. 每一次迭代的样本数目. 
nb_epoch: int. 
verbose: 0 表示不更新日志, 1 更新日志, 2 每个epoch一个进度行. 
validation_split: float (0 < x < 1).验证集的一部分. 
validation_data: tuple (X, y) 数据作为验证集. 将加载validation_split. 
shuffle: boolean. 每个 epoch是否随机抽取样本. 
show_accuracy: boolean. 每个epoch是否显示分类正确率. 
evaluate(X, y, batch_size=128, show_accuracy=False, verbose=1): 通过验证集的数据显示model的性能. 
Return: 返回数据的损失值. 
Arguments: 和上面fit函数定义相同. verbose用作二进制标识(进度条或无). 
predict(X, batch_size=128, verbose=1): 
Return: 测试数据的预测数组. 
Arguments: 和fit一样. 
predict_classes(X, batch_size=128, verbose=1): 返回test data的类预测数组. 
Return: 测试数据的标签数组. 
Arguments: 和fit一样. 
train(X, y, accuracy=False): 一个batch的梯度更新. if accuracy==False, return tuple (loss_on_batch, accuracy_on_batch). Else, return loss_on_batch. 
Return: 损失值, 或者tuple (loss, accuracy) if accuracy=True. 
test(X, y, accuracy=False): 一个batch的性能计算. if accuracy==False, return tuple (loss_on_batch, accuracy_on_batch). Else, return loss_on_batch. 
Return: 损失值, 或 tuple (loss, accuracy) if accuracy=True. 
save_weights(fname):保存所有层的权值到HDF5文件中. 
load_weights(fname): 加载保存在save_weights中模型权值. 只能加载相同结构的文件.

下面是自己写的一个小程序

<code class="hljs python has-numbering" style="display: block; padding: 0px; color: inherit; box-sizing: border-box; font-family: 'Source Code Pro', monospace;font-size:undefined; white-space: pre; border-radius: 0px; word-wrap: normal; background: transparent;"><span class="hljs-comment" style="color: rgb(136, 0, 0); box-sizing: border-box;">#coding:utf-8</span>
<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">'''
Created on 2015-9-12
@author: zzq2015
'''</span>
<span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">from</span> keras.models <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">import</span> Sequential
<span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">from</span> keras.layers.core <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">import</span> Dense, Dropout, Activation
<span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">import</span> scipy.io <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">as</span> sio   
<span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">import</span> numpy <span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">as</span> np 

model = Sequential()
model.add(Dense(<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">4</span>, <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">200</span>, init=<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">'uniform'</span>))
model.add(Activation(<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">'relu'</span>))
model.add(Dropout(<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0.5</span>))
model.add(Dense(<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">200</span>, <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">100</span>, init=<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">'uniform'</span>))
model.add(Activation(<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">'relu'</span>))
model.add(Dropout(<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0.5</span>))
model.add(Dense(<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">100</span>, <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">50</span>, init=<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">'uniform'</span>))
model.add(Activation(<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">'relu'</span>))
model.add(Dropout(<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0.5</span>))
model.add(Dense(<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">50</span>, <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">20</span>, init=<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">'uniform'</span>))
model.add(Activation(<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">'relu'</span>))
model.add(Dropout(<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0.5</span>))
model.add(Dense(<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">20</span>, <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">3</span>, init=<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">'uniform'</span>))
model.add(Activation(<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">'softmax'</span>))


model.compile(loss=<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">'binary_crossentropy'</span>, optimizer=<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">'adam'</span>, class_mode=<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">"binary"</span>)

matfn=<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">u'/media/zzq2015/学习/python/da/kerasTrain.mat'</span>
data=sio.loadmat(matfn) 
data = np.array(data.get(<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">'iris_train'</span>))
trainDa = data[:<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">80</span>,:<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">4</span>]
trainBl  = data[:<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">80</span>,<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">4</span>:]
testDa = data[<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">80</span>:,:<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">4</span>]
testBl  = data[<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">80</span>:,<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">4</span>:] 

model.fit(trainDa, trainBl, nb_epoch=<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">80</span>, batch_size=<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">20</span>)
<span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">print</span> model.evaluate(testDa, testBl, show_accuracy=<span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">True</span>)
<span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">print</span> model.predict_classes(testDa)
<span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">print</span> <span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">'真实标签:\n'</span>
<span class="hljs-keyword" style="color: rgb(0, 0, 136); box-sizing: border-box;">print</span> testBl</code><ul class="pre-numbering" style="box-sizing: border-box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221, 221, 221); list-style: none; text-align: right; background-color: rgb(238, 238, 238);"><li style="box-sizing: border-box; padding: 0px 5px;">1</li><li style="box-sizing: border-box; padding: 0px 5px;">2</li><li style="box-sizing: border-box; padding: 0px 5px;">3</li><li style="box-sizing: border-box; padding: 0px 5px;">4</li><li style="box-sizing: border-box; padding: 0px 5px;">5</li><li style="box-sizing: border-box; padding: 0px 5px;">6</li><li style="box-sizing: border-box; padding: 0px 5px;">7</li><li style="box-sizing: border-box; padding: 0px 5px;">8</li><li style="box-sizing: border-box; padding: 0px 5px;">9</li><li style="box-sizing: border-box; padding: 0px 5px;">10</li><li style="box-sizing: border-box; padding: 0px 5px;">11</li><li style="box-sizing: border-box; padding: 0px 5px;">12</li><li style="box-sizing: border-box; padding: 0px 5px;">13</li><li style="box-sizing: border-box; padding: 0px 5px;">14</li><li style="box-sizing: border-box; padding: 0px 5px;">15</li><li style="box-sizing: border-box; padding: 0px 5px;">16</li><li style="box-sizing: border-box; padding: 0px 5px;">17</li><li style="box-sizing: border-box; padding: 0px 5px;">18</li><li style="box-sizing: border-box; padding: 0px 5px;">19</li><li style="box-sizing: border-box; padding: 0px 5px;">20</li><li style="box-sizing: border-box; padding: 0px 5px;">21</li><li style="box-sizing: border-box; padding: 0px 5px;">22</li><li style="box-sizing: border-box; padding: 0px 5px;">23</li><li style="box-sizing: border-box; padding: 0px 5px;">24</li><li style="box-sizing: border-box; padding: 0px 5px;">25</li><li style="box-sizing: border-box; padding: 0px 5px;">26</li><li style="box-sizing: border-box; padding: 0px 5px;">27</li><li style="box-sizing: border-box; padding: 0px 5px;">28</li><li style="box-sizing: border-box; padding: 0px 5px;">29</li><li style="box-sizing: border-box; padding: 0px 5px;">30</li><li style="box-sizing: border-box; padding: 0px 5px;">31</li><li style="box-sizing: border-box; padding: 0px 5px;">32</li><li style="box-sizing: border-box; padding: 0px 5px;">33</li><li style="box-sizing: border-box; padding: 0px 5px;">34</li><li style="box-sizing: border-box; padding: 0px 5px;">35</li><li style="box-sizing: border-box; padding: 0px 5px;">36</li><li style="box-sizing: border-box; padding: 0px 5px;">37</li><li style="box-sizing: border-box; padding: 0px 5px;">38</li><li style="box-sizing: border-box; padding: 0px 5px;">39</li><li style="box-sizing: border-box; padding: 0px 5px;">40</li><li style="box-sizing: border-box; padding: 0px 5px;">41</li><li style="box-sizing: border-box; padding: 0px 5px;">42</li></ul><ul class="pre-numbering" style="box-sizing: border-box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221, 221, 221); list-style: none; text-align: right; background-color: rgb(238, 238, 238);"><li style="box-sizing: border-box; padding: 0px 5px;">1</li><li style="box-sizing: border-box; padding: 0px 5px;">2</li><li style="box-sizing: border-box; padding: 0px 5px;">3</li><li style="box-sizing: border-box; padding: 0px 5px;">4</li><li style="box-sizing: border-box; padding: 0px 5px;">5</li><li style="box-sizing: border-box; padding: 0px 5px;">6</li><li style="box-sizing: border-box; padding: 0px 5px;">7</li><li style="box-sizing: border-box; padding: 0px 5px;">8</li><li style="box-sizing: border-box; padding: 0px 5px;">9</li><li style="box-sizing: border-box; padding: 0px 5px;">10</li><li style="box-sizing: border-box; padding: 0px 5px;">11</li><li style="box-sizing: border-box; padding: 0px 5px;">12</li><li style="box-sizing: border-box; padding: 0px 5px;">13</li><li style="box-sizing: border-box; padding: 0px 5px;">14</li><li style="box-sizing: border-box; padding: 0px 5px;">15</li><li style="box-sizing: border-box; padding: 0px 5px;">16</li><li style="box-sizing: border-box; padding: 0px 5px;">17</li><li style="box-sizing: border-box; padding: 0px 5px;">18</li><li style="box-sizing: border-box; padding: 0px 5px;">19</li><li style="box-sizing: border-box; padding: 0px 5px;">20</li><li style="box-sizing: border-box; padding: 0px 5px;">21</li><li style="box-sizing: border-box; padding: 0px 5px;">22</li><li style="box-sizing: border-box; padding: 0px 5px;">23</li><li style="box-sizing: border-box; padding: 0px 5px;">24</li><li style="box-sizing: border-box; padding: 0px 5px;">25</li><li style="box-sizing: border-box; padding: 0px 5px;">26</li><li style="box-sizing: border-box; padding: 0px 5px;">27</li><li style="box-sizing: border-box; padding: 0px 5px;">28</li><li style="box-sizing: border-box; padding: 0px 5px;">29</li><li style="box-sizing: border-box; padding: 0px 5px;">30</li><li style="box-sizing: border-box; padding: 0px 5px;">31</li><li style="box-sizing: border-box; padding: 0px 5px;">32</li><li style="box-sizing: border-box; padding: 0px 5px;">33</li><li style="box-sizing: border-box; padding: 0px 5px;">34</li><li style="box-sizing: border-box; padding: 0px 5px;">35</li><li style="box-sizing: border-box; padding: 0px 5px;">36</li><li style="box-sizing: border-box; padding: 0px 5px;">37</li><li style="box-sizing: border-box; padding: 0px 5px;">38</li><li style="box-sizing: border-box; padding: 0px 5px;">39</li><li style="box-sizing: border-box; padding: 0px 5px;">40</li><li style="box-sizing: border-box; padding: 0px 5px;">41</li><li style="box-sizing: border-box; padding: 0px 5px;">42</li></ul>

输出结果如下:

<code class="hljs lua has-numbering" style="display: block; padding: 0px; color: inherit; box-sizing: border-box; font-family: 'Source Code Pro', monospace;font-size:undefined; white-space: pre; border-radius: 0px; word-wrap: normal; background: transparent;">Epoch <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">79</span>

<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">20</span>/<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">80</span> [======>.......................] - ETA: <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0</span>s - loss: <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0.1042</span>
<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">40</span>/<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">80</span> [==============>...............] - ETA: <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0</span>s - loss: <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0.0857</span>
<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">60</span>/<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">80</span> [=====================>........] - ETA: <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0</span>s - loss: <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0.0826</span>
<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">80</span>/<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">80</span> [==============================] - <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0</span>s - loss: <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0.1216</span>     

<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">10</span>/<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">10</span> [==============================] - <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0</span>s
[<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0.15986641560148043</span>, <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">1.0</span>]

<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">10</span>/<span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">10</span> [==============================] - <span class="hljs-number" style="color: rgb(0, 102, 102); box-sizing: border-box;">0</span>s
<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">[[0 0 1]
 [0 0 1]
 [0 0 1]
 [0 0 1]
 [0 0 1]
 [0 0 1]
 [0 0 1]
 [0 0 1]
 [0 0 1]
 [0 0 1]]</span>
真实标签:

<span class="hljs-string" style="color: rgb(0, 136, 0); box-sizing: border-box;">[[ 0.  0.  1.]
 [ 0.  0.  1.]
 [ 0.  0.  1.]
 [ 0.  0.  1.]
 [ 0.  0.  1.]
 [ 0.  0.  1.]
 [ 0.  0.  1.]
 [ 0.  0.  1.]
 [ 0.  0.  1.]
 [ 0.  0.  1.]]</span></code><ul class="pre-numbering" style="box-sizing: border-box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221, 221, 221); list-style: none; text-align: right; background-color: rgb(238, 238, 238);"><li style="box-sizing: border-box; padding: 0px 5px;">1</li><li style="box-sizing: border-box; padding: 0px 5px;">2</li><li style="box-sizing: border-box; padding: 0px 5px;">3</li><li style="box-sizing: border-box; padding: 0px 5px;">4</li><li style="box-sizing: border-box; padding: 0px 5px;">5</li><li style="box-sizing: border-box; padding: 0px 5px;">6</li><li style="box-sizing: border-box; padding: 0px 5px;">7</li><li style="box-sizing: border-box; padding: 0px 5px;">8</li><li style="box-sizing: border-box; padding: 0px 5px;">9</li><li style="box-sizing: border-box; padding: 0px 5px;">10</li><li style="box-sizing: border-box; padding: 0px 5px;">11</li><li style="box-sizing: border-box; padding: 0px 5px;">12</li><li style="box-sizing: border-box; padding: 0px 5px;">13</li><li style="box-sizing: border-box; padding: 0px 5px;">14</li><li style="box-sizing: border-box; padding: 0px 5px;">15</li><li style="box-sizing: border-box; padding: 0px 5px;">16</li><li style="box-sizing: border-box; padding: 0px 5px;">17</li><li style="box-sizing: border-box; padding: 0px 5px;">18</li><li style="box-sizing: border-box; padding: 0px 5px;">19</li><li style="box-sizing: border-box; padding: 0px 5px;">20</li><li style="box-sizing: border-box; padding: 0px 5px;">21</li><li style="box-sizing: border-box; padding: 0px 5px;">22</li><li style="box-sizing: border-box; padding: 0px 5px;">23</li><li style="box-sizing: border-box; padding: 0px 5px;">24</li><li style="box-sizing: border-box; padding: 0px 5px;">25</li><li style="box-sizing: border-box; padding: 0px 5px;">26</li><li style="box-sizing: border-box; padding: 0px 5px;">27</li><li style="box-sizing: border-box; padding: 0px 5px;">28</li><li style="box-sizing: border-box; padding: 0px 5px;">29</li><li style="box-sizing: border-box; padding: 0px 5px;">30</li><li style="box-sizing: border-box; padding: 0px 5px;">31</li><li style="box-sizing: border-box; padding: 0px 5px;">32</li><li style="box-sizing: border-box; padding: 0px 5px;">33</li></ul><ul class="pre-numbering" style="box-sizing: border-box; position: absolute; width: 50px; top: 0px; left: 0px; margin: 0px; padding: 6px 0px 40px; border-right-width: 1px; border-right-style: solid; border-right-color: rgb(221, 221, 221); list-style: none; text-align: right; background-color: rgb(238, 238, 238);"><li style="box-sizing: border-box; padding: 0px 5px;">1</li><li style="box-sizing: border-box; padding: 0px 5px;">2</li><li style="box-sizing: border-box; padding: 0px 5px;">3</li><li style="box-sizing: border-box; padding: 0px 5px;">4</li><li style="box-sizing: border-box; padding: 0px 5px;">5</li><li style="box-sizing: border-box; padding: 0px 5px;">6</li><li style="box-sizing: border-box; padding: 0px 5px;">7</li><li style="box-sizing: border-box; padding: 0px 5px;">8</li><li style="box-sizing: border-box; padding: 0px 5px;">9</li><li style="box-sizing: border-box; padding: 0px 5px;">10</li><li style="box-sizing: border-box; padding: 0px 5px;">11</li><li style="box-sizing: border-box; padding: 0px 5px;">12</li><li style="box-sizing: border-box; padding: 0px 5px;">13</li><li style="box-sizing: border-box; padding: 0px 5px;">14</li><li style="box-sizing: border-box; padding: 0px 5px;">15</li><li style="box-sizing: border-box; padding: 0px 5px;">16</li><li style="box-sizing: border-box; padding: 0px 5px;">17</li><li style="box-sizing: border-box; padding: 0px 5px;">18</li><li style="box-sizing: border-box; padding: 0px 5px;">19</li><li style="box-sizing: border-box; padding: 0px 5px;">20</li><li style="box-sizing: border-box; padding: 0px 5px;">21</li><li style="box-sizing: border-box; padding: 0px 5px;">22</li><li style="box-sizing: border-box; padding: 0px 5px;">23</li><li style="box-sizing: border-box; padding: 0px 5px;">24</li><li style="box-sizing: border-box; padding: 0px 5px;">25</li><li style="box-sizing: border-box; padding: 0px 5px;">26</li><li style="box-sizing: border-box; padding: 0px 5px;">27</li><li style="box-sizing: border-box; padding: 0px 5px;">28</li><li style="box-sizing: border-box; padding: 0px 5px;">29</li><li style="box-sizing: border-box; padding: 0px 5px;">30</li><li style="box-sizing: border-box; padding: 0px 5px;">31</li><li style="box-sizing: border-box; padding: 0px 5px;">32</li><li style="box-sizing: border-box; padding: 0px 5px;">33</li></ul>

0.15是损失值,1是准确率


原文链接:http://blog.csdn.net/star_bob/article/details/48598417

Logo

更多推荐