一、机器学习中的参数估计问题

    在前面的博文中,如“简单易学的机器学习算法——Logistic回归”中,采用了极大似然函数对其模型中的参数进行估计,简单来讲即对于一系列样本Logistic回归问题属于监督型学习问题,样本中含有训练的特征以及标签,在Logistic回归的参数求解中,通过构造样本属于类别和类别的概率:



这样便能得到Logistic回归的属于不同类别的概率函数:


此时,使用极大似然估计便能够估计出模型中的参数。但是,如果此时的标签是未知的,称为隐变量,如无监督的学习问题,典型的如K-Means聚类算法,此时不能直接通过极大似然估计估计出模型中的参数。

二、EM算法简介

    在上述存在隐变量的问题中,不能直接通过极大似然估计求出模型中的参数,EM算法是一种解决存在隐含变量优化问题的有效方法。EM算法是期望极大(Expectation Maximization)算法的简称,EM算法是一种迭代型的算法,在每一次的迭代过程中,主要分为两步:即求期望(Expectation)步骤和最大化(Maximization)步骤。

三、EM算法推导的准备

1、凸函数

    设是定义在实数域上的函数,如果对于任意的实数,都有

那么是凸函数。若不是单个实数,而是由实数组成的向量,此时,如果函数Hesse矩阵是半正定的,即


那么是凸函数。特别地,如果或者,那么称为严格凸函数。

2、Jensen不等式

    如果函数是凸函数,是随机变量,那么


特别地,如果函数是严格凸函数,那么当且仅当

即随机变量是常量。


(图片来自参考文章1)

注:若函数是凹函数,上述的符号相反。

3、数学期望

3.1随机变量的期望

   设离散型随机变量的概率分布为:


其中,,如果绝对收敛,则称的数学期望,记为,即:


   若连续型随机变量的概率密度函数为,则数学期望为:


3.2随机变量函数的数学期望

   设是随机变量的函数,即,若是离散型随机变量,概率分布为:


则:


   若是连续型随机变量,概率密度函数为,则


四、EM算法的求解过程

    假设表示观测变量,表示潜变量,则此时即为完全数据,的似然函数为,其中,为需要估计的参数,那么对于完全数据,的似然函数为
    构建好似然函数,对于给定的观测数据,为了估计参数,我们可以使用极大似然估计的方法对其进行估计。因为变量是未知的,我们只能对的似然函数为进行极大似然估计,即需要极大化:

上述式子中无法直接对求极大值,因为在函数中存在隐变量,即未知变量。若此时,我们能够确定隐变量的值,便能够求出的极大值,可以用过不断的修改隐变量的值,得到新的的极大值。这便是EM算法的思路。通过迭代的方式求出参数
    首先我们需要对参数赋初值,进行迭代运算,假设第次迭代后参数的值为,此时的log似然函数为,即:

在上式中,第二行到第三行使用到了Jensen不等式,由于log函数是凹函数,由Jensen不等式得到:



表示的是的期望,其中,表示的是隐变量满足的某种分布。这样,上式的值取决于的概率。在迭代的过程中,调整这两个概率,使得下界不断的上升,这样就能求得的极大值。注意,当等式成立时,说明此时已经等价于。由Jensen不等式可知,等式成立的条件是随机变量是常数,即:

已知:

所以:

则:

至此,我们得出了隐变量满足的分布的形式。这就是 EM 算法中的 E 步。在确定了后,调整参数使得取得极大,这便是 M 步。 EM 算法的步骤为:
  1. 初始化参数,开始迭代;
  2. E步:假设为第次迭代参数的估计值,则在第次迭代中,计算
  3. M步:求使极大化的,确定次的参数的估计值

五、EM算法的收敛性保证

迭代的过程能否保证最后找到的就是最大的似然函数值呢?即需要证明在整个迭代的过程中,极大似然估计是单调增加的。假定是EM算法的第次和第次迭代后的结果,选定,进行迭代:
  1. E步:
  2. M步:
固定,将看成变量:

上式中,第一个大于等于是因为:

六、利用EM算法参数求解实例

    假设有有一批数据分别是由两个正态分布:


产生,其中,未知,。但是不知道具体的是第产生,即可以使用表示。这是一个典型的涉及到隐藏变量的例子,隐藏变量为。可以使用EM算法对参数进行估计。

  1. 首先是初始化
  2. E步:,即求数据是由第个分布产生的概率:
  3. M步:,即计算最大的期望值。然而我们要求的参数是均值,可以通过如下的方式估计:

Python代码

#coding:UTF-8
'''
Created on 2015年6月7日

@author: zhaozhiyong
'''
from __future__ import division
from numpy import *
import math as mt
#首先生成一些用于测试的样本
#指定两个高斯分布的参数,这两个高斯分布的方差相同
sigma = 6
miu_1 = 40
miu_2 = 20

#随机均匀选择两个高斯分布,用于生成样本值
N = 1000
X = zeros((1, N))
for i in xrange(N):
    if random.random() > 0.5:#使用的是numpy模块中的random
        X[0, i] = random.randn() * sigma + miu_1
    else:
        X[0, i] = random.randn() * sigma + miu_2

#上述步骤已经生成样本
#对生成的样本,使用EM算法计算其均值miu

#取miu的初始值
k = 2
miu = random.random((1, k))
#miu = mat([40.0, 20.0])
Expectations = zeros((N, k))

for step in xrange(1000):#设置迭代次数
    #步骤1,计算期望
    for i in xrange(N):
        #计算分母
        denominator = 0
        for j in xrange(k):
            denominator = denominator + mt.exp(-1 / (2 * sigma ** 2) * (X[0, i] - miu[0, j]) ** 2)
        
        #计算分子
        for j in xrange(k):
            numerator = mt.exp(-1 / (2 * sigma ** 2) * (X[0, i] - miu[0, j]) ** 2)
            Expectations[i, j] = numerator / denominator
    
    #步骤2,求期望的最大
    #oldMiu = miu
    oldMiu = zeros((1, k))
    for j in xrange(k):
        oldMiu[0, j] = miu[0, j]
        numerator = 0
        denominator = 0
        for i in xrange(N):
            numerator = numerator + Expectations[i, j] * X[0, i]
            denominator = denominator + Expectations[i, j]
        miu[0, j] = numerator / denominator
        
    
    #判断是否满足要求
    epsilon = 0.0001
    if sum(abs(miu - oldMiu)) < epsilon:
        break
    
    print step
    print miu
    
print miu

最终结果

[[ 40.49487592  19.96497512]]


参考文章:

1、(EM算法)The EM Algorithm (http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html)

2、数学期望(http://wenku.baidu.com/view/915a9c1ec5da50e2524d7f08.html?re=view)


Logo

CSDN联合极客时间,共同打造面向开发者的精品内容学习社区,助力成长!

更多推荐