LLaMA Factory是一个大模型高效微调平台,在github有60k多收藏了,很适合入门的朋友

提供了“ 一站式”的操作界面,通过可视化操作,就可以完成对LLMs 或 VLMs的微调了

开源地址:https://github.com/hiyouga/LLaMA-Factory

下面是微调的页面,简洁、清晰、功能多

目录

一、LLaMA Factory的特色

二、支持的模型

三、提供的数据集(基础)

四、安装LLaMA Factory 

五、微调LLM实践--Qwen3-4B-Thinking

 六、微调VLM实践--Qwen/Qwen2.5-VL-3B-Instruct

七、了解源代码

八、其他参考资料


一、LLaMA Factory的特色

  • 多种模型:LLaMA、LLaVA、Mistral、Mixtral-MoE、Qwen、Qwen2-VL、Qwen3、DeepSeek、Yi、Gemma、ChatGLM、Phi 等等。
  • 集成方法:(增量)预训练、(多模态)指令监督微调、奖励模型训练、PPO 训练、DPO 训练、KTO 训练、ORPO 训练等等。
  • 多种精度:16 比特全参数微调、冻结微调、LoRA 微调和基于 AQLM/AWQ/GPTQ/LLM.int8/HQQ/EETQ 的 2/3/4/5/6/8 比特 QLoRA 微调。
  • 先进算法GaLoreBAdamAPOLLOAdam-miniMuonOFT、DoRA、LongLoRA、LLaMA Pro、Mixture-of-Depths、LoRA+、LoftQ 和 PiSSA。
  • 实用技巧FlashAttention-2UnslothLiger Kernel、RoPE scaling、NEFTune 和 rsLoRA。
  • 广泛任务:多轮对话、工具调用、图像理解、视觉定位、视频识别和语音理解等等。
  • 实验监控:LlamaBoard、TensorBoard、Wandb、MLflow、SwanLab 等等。
  • 极速推理:基于 vLLM 或 SGLang 的 OpenAI 风格 API、浏览器界面和命令行接口。

可以对最新的模型进行微调,下面是建议的计划:

适配时间 模型名称
Day 0 Qwen3 / Qwen2.5-VL / Gemma 3 / GLM-4.1V / InternLM 3 / MiniCPM-o-2.6
Day 1 Llama 3 / GLM-4 / Mistral Small / PaliGemma2 / Llama 4

支持的训练方法:

方法 全参数训练 部分参数训练 LoRA QLoRA
预训练
指令监督微调
奖励模型训练
PPO 训练
DPO 训练
KTO 训练
ORPO 训练
SimPO 训练

二、支持的模型

主要包括下面这些模型:(还有一些没有列出来)

模型名 参数量 Template
Baichuan 2 7B/13B baichuan2
BLOOM/BLOOMZ 560M/1.1B/1.7B/3B/7.1B/176B -
ChatGLM3 6B chatglm3
Command R 35B/104B cohere
DeepSeek (Code/MoE) 7B/16B/67B/236B deepseek
DeepSeek 2.5/3 236B/671B deepseek3
DeepSeek R1 (Distill) 1.5B/7B/8B/14B/32B/70B/671B deepseekr1
ERNIE-4.5 0.3B/21B/300B ernie/ernie_nothink
Falcon 7B/11B/40B/180B falcon
Falcon-H1 0.5B/1.5B/3B/7B/34B falcon_h1
Gemma/Gemma 2/CodeGemma 2B/7B/9B/27B gemma/gemma2
Gemma 3/Gemma 3n 270M/1B/4B/6B/8B/12B/27B gemma3/gemma3n
GLM-4/GLM-4-0414/GLM-Z1 9B/32B glm4/glmz1
GLM-4.1V 9B glm4v
GLM-4.5/GLM-4.5V 106B/355B glm4_moe/glm4v_moe
GPT-2 0.1B/0.4B/0.8B/1.5B -
GPT-OSS 20B/120B gpt
Granite 3.0-3.3 1B/2B/3B/8B granite3
Granite 4 7B granite4
Hunyuan (MT) 7B hunyuan
Index 1.9B index
InternLM 2-3 7B/8B/20B intern2
InternVL 2.5-3.5 1B/2B/4B/8B/14B/30B/38B/78B/241B intern_vl
InternLM/Intern-S1-mini 8B intern_s1
Kimi-VL 16B kimi_vl
Ling 2.0 (mini/flash) 16B/100B bailing_v2
Llama 7B/13B/33B/65B -
Llama 2 7B/13B/70B llama2
Llama 3-3.3 1B/3B/8B/70B llama3
Llama 4 109B/402B llama4
Llama 3.2 Vision 11B/90B mllama
LLaVA-1.5 7B/13B llava
LLaVA-NeXT 7B/8B/13B/34B/72B/110B llava_next
LLaVA-NeXT-Video 7B/34B llava_next_video
MiMo 7B mimo
MiniCPM 1-4.1 0.5B/1B/2B/4B/8B cpm/cpm3/cpm4
MiniCPM-o-2.6/MiniCPM-V-2.6 8B minicpm_o/minicpm_v
Ministral/Mistral-Nemo 8B/12B ministral
Mistral/Mixtral 7B/8x7B/8x22B mistral
Mistral Small 24B mistral_small
OLMo 1B/7B -
PaliGemma/PaliGemma2 3B/10B/28B paligemma
Phi-1.5/Phi-2 1.3B/2.7B -
Phi-3/Phi-3.5 4B/14B phi
Phi-3-small 7B phi_small
Phi-4 14B phi4
Pixtral 12B pixtral
Qwen (1-2.5) (Code/Math/MoE/QwQ) 0.5B/1.5B/3B/7B/14B/32B/72B/110B qwen
Qwen3 (MoE/Instruct/Thinking/Next) 0.6B/1.7B/4B/8B/14B/32B/80B/235B qwen3/qwen3_nothink
Qwen2-Audio 7B qwen2_audio
Qwen2.5-Omni 3B/7B qwen2_omni
Qwen3-Omni 30B qwen3_omni
Qwen2-VL/Qwen2.5-VL/QVQ 2B/3B/7B/32B/72B qwen2_vl
Qwen3-VL 235B qwen3_vl
Seed (OSS/Coder) 8B/36B seed_oss/seed_coder
Skywork o1 8B skywork_o1
StarCoder 2 3B/7B/15B -
TeleChat2 3B/7B/35B/115B telechat2
XVERSE 7B/13B/65B xverse
Yi/Yi-1.5 (Code) 1.5B/6B/9B/34B yi
Yi-VL 6B/34B yi_vl
Yuan 2 2B/51B/102B yuan

三、提供的数据集(基础)

下面这些是基础数据集,提供给我们使用的,我们也可以自定义数据集的。

预训练数据集

指令微调数据集

偏好数据集

注意:部分数据集的使用需要确认,推荐使用下述命令登录自己的 Hugging Face 账户

pip install --upgrade huggingface_hub
huggingface-cli login

四、安装LLaMA Factory 

这里推荐“Conda环境+源码安装”的方式

首先下载代码,进入目录,执行命令:

git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory

创建一个Conda环境,名字为LLaMA-Factory,指定Python是3.10:

conda create -n LLaMA-Factory python=3.10

然后安装troch=2.5.1,CUDA=12.1,执行命令:

pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu121

最后安装其他依赖库:

pip install -e ".[torch,metrics]" --no-build-isolation

电脑硬件方面,微调训练的参考:

方法 精度 7B 14B 30B 70B xB
Full (bf16 or fp16) 32 120GB 240GB 600GB 1200GB 18xGB
Full (pure_bf16) 16 60GB 120GB 300GB 600GB 8xGB
Freeze/LoRA/GaLore/APOLLO/BAdam 16 16GB 32GB 64GB 160GB 2xGB
QLoRA 8 10GB 20GB 40GB 80GB xGB
QLoRA 4 6GB 12GB 24GB 48GB x/2GB
QLoRA 2 4GB 8GB 16GB 24GB x/4GB

五、微调LLM实践--Qwen3-4B-Thinking

进入代码目录,并进入Conda环境:

conda activate LLaMA-Factory

通过下面命令,打开微调可视化界面:

llamafactory-cli webui

然后我们选择模型(Qwen3-4B-Thinking)、微调方法(lora)、训练方式(Supervised Fine-Tuning)监督微调

选择数据集(alpaca_zh_demo),点击“预览数据集”能看到:

其他参考可以默认了,然后点击“训练”,等待训练完成

完成LLM微调啦~

 六、微调VLM实践--Qwen/Qwen2.5-VL-3B-Instruct

进入代码目录,并进入Conda环境:

conda activate LLaMA-Factory

通过下面命令,打开微调可视化界面:

llamafactory-cli webui

然后我们选择模型(Qwen/Qwen2.5-VL-3B-Instruct)、微调方法(lora)、训练方式(Supervised Fine-Tuning)监督微调

选择数据集(mllm_demo),点击“预览数据集”能看到:

对应的图片:(LLaMA-Factory/data/mllm_demo_data/1.jpg)

微调的训练轮数改为10

其他参考可以默认了,然后点击“训练”,等待训练完成

完成VLM微调啦~

七、了解源代码

目录结构,是这样的:

首先看看数据集的目录,有上面微调训练用到的alpaca_zh_demo.json、mllm_demo.json,

还有一些其他数据集,也能使用的

看一下alpaca_zh_demo.json文件的数据:

[
  {
    "instruction": "识别并解释给定列表中的两个科学理论:细胞理论和日心说。",
    "input": "",
    "output": "细胞理论是生物科学的一个理论,它认为所有生命体都是由微小的基本单元——细胞所构成。这是生物学的一个基础理论,认为细胞是所有生物的基本结构和功能单位,所有的生物都是由一个或多个细胞组成,细胞只能通过细胞分裂产生新的细胞。这一理论由薛定谔、施瓦内和雪莱于1839年首次提出。\n\n日心说是指太阳是太阳系的中心,也就是说,行星围绕太阳旋转的理论。这个理论打破了传统的地心说观点,认为地球并不是宇宙的中心。日心说的提出者是尼古拉·哥白尼,他在16世纪初发表了他的著作《天体运行论》,阐述了太阳系行星围绕太阳运行的模型,为天文学的发展做出了巨大贡献。"
  },
  {
    "instruction": "输入三支篮球队的名称并生成一个适当的口号。",
    "input": "输入:俄克拉荷马城雷霆队,芝加哥公牛队,布鲁克林网队。",
    "output": "输出: \"雷霆,公牛和网队:各显神通,角逐群雄!\""
  },
  {
    "instruction": "比较以下两位著名人物,使用特征列表并以句子形式提供输出。",
    "input": "人物1:阿尔伯特·爱因斯坦\n人物2:斯蒂芬·霍金\n特征:智力、教育、对世界的影响",
    "output": "阿尔伯特·爱因斯坦和斯蒂芬·霍金都是拥有极其出色智力的人物。两人都取得过非常高的教育成就,他们推进了科学发展并在世界范围内产生了深远的影响。爱因斯坦以其相对论和质能关系公式而闻名,而霍金以其关于黑洞和宇宙的发现而著称。两位科学家都以其深厚的学识和非凡的贡献影响了世界。"
  },
  {
    "instruction": "请根据以下文章构建一个需要回答的问题。",
    "input": "",
    "output": "我不好意思,您没有提供任何信息或文章来供我根据它构建问题。 请提供相应的文章或信息,以便我能够帮助您构建问题。"
  },
.........
  {
    "instruction": "描述安第斯山脉的位置。",
    "input": "",
    "output": "安第斯山脉位于南美洲,横跨七个国家,包括委内瑞拉,哥伦比亚,厄瓜多尔,秘鲁,玻利维亚,智利和阿根廷。安第斯山脉是世界上最长的山脉之一,全长约7,000千米(4,350英里),其山脉沿着南美洲西海岸蜿蜒延伸,平均海拔约为4,000米(13,000英尺)。在其南部,安第斯山脉宽度达到700千米(430英里),在其北部宽度约为500千米(310英里)。"
  }

看一下mllm_demo.json文件的数据:

[
  {
    "messages": [
      {
        "content": "<image>Who are they?",
        "role": "user"
      },
      {
        "content": "They're Kane and Gretzka from Bayern Munich.",
        "role": "assistant"
      },
      {
        "content": "What are they doing?<image>",
        "role": "user"
      },
      {
        "content": "They are celebrating on the soccer field.",
        "role": "assistant"
      }
    ],
    "images": [
      "mllm_demo_data/1.jpg",
      "mllm_demo_data/1.jpg"
    ]
  },
  {
    "messages": [
      {
        "content": "<image>Who is he?",
        "role": "user"
      },
      {
        "content": "He's Thomas Muller from Bayern Munich.",
        "role": "assistant"
      },
      {
        "content": "Why is he on the ground?",
        "role": "user"
      },
      {
        "content": "Because he's sliding on his knees to celebrate.",
        "role": "assistant"
      }
    ],
    "images": [
      "mllm_demo_data/2.jpg"
    ]
  },
.......
  {
    "messages": [
      {
        "content": "<image>请描述这张图片",
        "role": "user"
      },
      {
        "content": "中国宇航员桂海潮正在讲话。",
        "role": "assistant"
      },
      {
        "content": "他取得过哪些成就?",
        "role": "user"
      },
      {
        "content": "他于2022年6月被任命为神舟十六号任务的有效载荷专家,从而成为2023年5月30日进入太空的首位平民宇航员。他负责在轨操作空间科学实验有效载荷。",
        "role": "assistant"
      }
    ],
    "images": [
      "mllm_demo_data/3.jpg"
    ]
  }
]

目前支持 alpaca 格式和 sharegpt 格式的数据集。允许的文件类型包括 json、jsonl、csv、parquet 和 arrow。

自定义数据集,参考https://github.com/hiyouga/LLaMA-Factory/blob/main/data/README_zh.md 来制作就好啦

然后在dataset_info.json文件中,添加自定义的数据集名字和格式就好啦.(能看到alpaca_zh_demo和mllm_demo数据集也在里面的)

比如,新加了vlm_graph_gen数据集,标注内容在vlm_graph_gen.json中:

{
  "identity": {
    "file_name": "identity.json"
  },
  "alpaca_en_demo": {
    "file_name": "alpaca_en_demo.json"
  },
  "alpaca_zh_demo": {
    "file_name": "alpaca_zh_demo.json"
  },
  "glaive_toolcall_en_demo": {
    "file_name": "glaive_toolcall_en_demo.json",
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversations",
      "tools": "tools"
    }
  },
  "glaive_toolcall_zh_demo": {
    "file_name": "glaive_toolcall_zh_demo.json",
    "formatting": "sharegpt",
    "columns": {
      "messages": "conversations",
      "tools": "tools"
    }
  },
  "mllm_demo": {
    "file_name": "mllm_demo.json",
    "formatting": "sharegpt",
    "columns": {
      "messages": "messages",
      "images": "images"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "user",
      "assistant_tag": "assistant"
    }
  },
  "vlm_graph_gen": {
    "file_name": "vlm_graph_gen.json",
    "formatting": "sharegpt",
    "columns": {
      "messages": "messages",
      "images": "images"
    },
    "tags": {
      "role_tag": "role",
      "content_tag": "content",
      "user_tag": "user",
      "assistant_tag": "assistant"
    }
  },

在微调训练时,就能选择它训练啦

八、其他参考资料

官网博客:

分享完成~

Logo

更多推荐