k8s二进制安装
下载地址:https://github.com/kubernetes/kubernetes/blob/release-1.20/CHANGELOG/CHANGELOG-1.20.md。------------------------------ 部署 Master 组件 ------------------------------#上传 kubernetes-server-linux-amd64.
一、二进制搭建k8s v1.20
节点 | ip | 安装的软件 |
master01 | 192.168.2.11 | kube-apiserver、controller-manager、scheduler、etcd |
node01 | 192.168.2.12 | kubelet、kube-proxy、docker |
node02 | 192.168.2.13 | kubelet、kube-proxy、docker |
etcd01 | 192.168.2.11 | |
etcd02 | 192.168.2.12 | |
etcd03 | 192.168.2.13 | |
master02 | 192.168.2.14 | |
负载均衡01 | 192.168.2.16 | |
负载均衡02 | 192.168.2.17 |
vip:192.168.2.100
1.1 操作系统初始化配置(master:192.168.2.11,node01:192.168.2.12,node02:192.168.2.13)
#关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
iptables -F && iptables -t nat -F && iptables -t mangle -F && iptables -X#关闭selinux
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config#关闭swap
swapoff -a
sed -ri 's/.*swap.*/#&/' /etc/fstab#根据规划设置主机名
hostnamectl set-hostname master01
hostnamectl set-hostname node01
hostnamectl set-hostname node02
#在master01 node01 node02都添加hosts
cat >> /etc/hosts << EOF
192.168.10.80 master01
192.168.10.20 master02
192.168.10.18 node01
192.168.10.19 node02
EOF#调整内核参数
cat > /etc/sysctl.d/k8s.conf << EOF
#开启网桥模式,可将网桥的流量传递给iptables链
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables = 1
#关闭ipv6协议
net.ipv6.conf.all.disable_ipv6=1
net.ipv4.ip_forward=1
EOFsysctl --system
#时间同步
yum install ntpdate -y
ntpdate time.windows.com
1.2 node 节点部署docker引擎(192.168.2.12、192.168.2.13)
//所有 node 节点部署docker引擎
yum install -y yum-utils device-mapper-persistent-data lvm2
yum-config-manager --add-repo https://mirrors.aliyun.com/docker-ce/linux/centos/docker-ce.repo
yum install -y docker-ce docker-ce-cli containerd.iosystemctl start docker.service
systemctl enable docker.service
1.3 生成Etcd证书
cd /opt/
[root@master01 opt]#ls
cfssl cfssl-certinfo cfssljson
[root@master01 opt]# mv cfssl* /usr/local/bin/
[root@master01 opt]#
[root@master01 opt]#chmod +x /usr/local/bin/cfssl*
[root@master01 opt]#ll /usr/local/bin/
总用量 18808
-rwxr-xr-x. 1 root root 10376657 2月 17 2021 cfssl
-rwxr-xr-x. 1 root root 6595195 2月 17 2021 cfssl-certinfo
-rwxr-xr-x. 1 root root 2277873 2月 17 2021 cfssljsonmkdir /opt/k8s
cd /opt/k8s/#上传 etcd-cert.sh 和 etcd.sh 到 /opt/k8s/ 目录中
chmod +x etcd-cert.sh etcd.sh#创建用于生成CA证书、etcd 服务器证书以及私钥的目录
mkdir /opt/k8s/etcd-cert
mv etcd-cert.sh etcd-cert/
cd /opt/k8s/etcd-cert/
./etcd-cert.sh #生成CA证书、etcd 服务器证书以及私钥ls
ca-config.json ca-csr.json ca.pem server.csr server-key.pem
ca.csr ca-key.pem etcd-cert.sh server-csr.json server.pem
1.4 在master节点上安装etcd
cd /opt/k8s/
tar zxvf etcd-v3.4.9-linux-amd64.tar.gz
ls etcd-v3.4.9-linux-amd64
Documentation etcd etcdctl README-etcdctl.md README.md READMEv2-etcdctl.md
------------------------------------------------------------------------------------------
etcd就是etcd 服务的启动命令,后面可跟各种启动参数
etcdctl主要为etcd 服务提供了命令行操作
------------------------------------------------------------------------------------------#创建用于存放 etcd 配置文件,命令文件,证书的目录
mkdir -p /opt/etcd/{cfg,bin,ssl}cd /opt/k8s/etcd-v3.4.9-linux-amd64/
mv etcd etcdctl /opt/etcd/bin/
cp /opt/k8s/etcd-cert/*.pem /opt/etcd/ssl/cd /opt/k8s/
./etcd.sh etcd01 192.168.10.80 etcd02=https://192.168.10.18:2380,etcd03=https://192.168.10.19:2380
#进入卡住状态等待其他节点加入,这里需要三台etcd服务同时启动,如果只启动其中一台后,服务会卡在那里,直到集群中所有etcd节点都已启动,可忽略这个情况#可另外打开一个窗口查看etcd进程是否正常
ps -ef | grep etcd
1.5 在两个node节点上安装etcd
#把etcd相关证书文件、命令文件和服务管理文件全部拷贝到另外两个etcd集群节点
scp -r /opt/etcd/ root@192.168.10.18:/opt/
scp -r /opt/etcd/ root@192.168.10.19:/opt/
scp /usr/lib/systemd/system/etcd.service root@192.168.10.18:/usr/lib/systemd/system/
scp /usr/lib/systemd/system/etcd.service root@192.168.10.19:/usr/lib/systemd/system/
//在 node01 节点上操作
vim /opt/etcd/cfg/etcd
#[Member]
ETCD_NAME="etcd02" #修改
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://192.168.10.18:2380" #修改
ETCD_LISTEN_CLIENT_URLS="https://192.168.10.18:2379" #修改#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://192.168.10.18:2380" #修改
ETCD_ADVERTISE_CLIENT_URLS="https://192.168.10.18:2379" #修改
ETCD_INITIAL_CLUSTER="etcd01=https://192.168.10.80:2380,etcd02=https://192.168.10.18:2380,etcd03=https://192.168.10.19:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"nade1与node2都要更改
1.6 检查etcd群集状态
#检查etcd群集状态
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.10.80:2379,https://192.168.10.18:2379,https://192.168.10.19:2379" endpoint health --write-out=tableETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.2.11:2379,https://192.168.2.12:2379,https://192.168.2.13:2379" endpoint status --write-out=table
------------------------------------------------------------------------------------------
--cert-file:识别HTTPS端使用SSL证书文件
--key-file:使用此SSL密钥文件标识HTTPS客户端
--ca-file:使用此CA证书验证启用https的服务器的证书
--endpoints:集群中以逗号分隔的机器地址列表
cluster-health:检查etcd集群的运行状况
------------------------------------------------------------------------------------------#查看etcd集群成员列表
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/ssl/ca.pem --cert=/opt/etcd/ssl/server.pem --key=/opt/etcd/ssl/server-key.pem --endpoints="https://192.168.2.11:2379,https://192.168.2.12:2379,https://192.168.2.13:2379" --write-out=table member list
1.7 注意快照
在虚拟机中做时,拍摄快照时需要挂起服务器,再进行快照,不然etcd会损坏
1.8 部署 Master 组件
------------------------------ 部署 Master 组件 ------------------------------
//在 master01 节点上操作
#上传 master.zip 和 k8s-cert.sh 到 /opt/k8s 目录中,解压 master.zip 压缩包
cd /opt/k8s/
unzip master.zip
chmod +x *.sh#创建kubernetes工作目录
mkdir -p /opt/kubernetes/{bin,cfg,ssl,logs}#创建用于生成CA证书、相关组件的证书和私钥的目录
mkdir /opt/k8s/k8s-cert
mv /opt/k8s/k8s-cert.sh /opt/k8s/k8s-cert
cd /opt/k8s/k8s-cert/
./k8s-cert.sh #生成CA证书、相关组件的证书和私钥ls *pem
admin-key.pem apiserver-key.pem ca-key.pem kube-proxy-key.pem
admin.pem apiserver.pem ca.pem kube-proxy.pem#复制CA证书、apiserver相关证书和私钥到 kubernetes工作目录的 ssl 子目录中
cp ca*pem apiserver*pem /opt/kubernetes/ssl/#上传 kubernetes-server-linux-amd64.tar.gz 到 /opt/k8s/ 目录中,解压 kubernetes 压缩包
#下载地址:https://github.com/kubernetes/kubernetes/blob/release-1.20/CHANGELOG/CHANGELOG-1.20.md
#注:打开链接你会发现里面有很多包,下载一个server包就够了,包含了Master和Worker Node二进制文件。
cd /opt/k8s/
tar zxvf kubernetes-server-linux-amd64.tar.gz#复制master组件的关键命令文件到 kubernetes工作目录的 bin 子目录中
cd /opt/k8s/kubernetes/server/bin
cp kube-apiserver kubectl kube-controller-manager kube-scheduler /opt/kubernetes/bin/
ln -s /opt/kubernetes/bin/* /usr/local/bin/#创建 bootstrap token 认证文件,apiserver 启动时会调用,然后就相当于在集群内创建了一个这个用户,接下来就可以用 RBAC 给他授权
cd /opt/k8s/
vim token.sh
#!/bin/bash
#获取随机数前16个字节内容,以十六进制格式输出,并删除其中空格
BOOTSTRAP_TOKEN=$(head -c 16 /dev/urandom | od -An -t x | tr -d ' ')
#生成 token.csv 文件,按照 Token序列号,用户名,UID,用户组 的格式生成
cat > /opt/kubernetes/cfg/token.csv <<EOF
${BOOTSTRAP_TOKEN},kubelet-bootstrap,10001,"system:kubelet-bootstrap"
EOFchmod +x token.sh
./token.shcat /opt/kubernetes/cfg/token.csv
#二进制文件、token、证书都准备好后,开启 apiserver 服务
cd /opt/k8s/
./apiserver.sh 192.168.2.11 https://192.168.2.11:2379,https://192.168.2.12:2379,https://192.168.2.13:2379#检查进程是否启动成功
ps aux | grep kube-apiservernetstat -natp | grep 6443 #安全端口6443用于接收HTTPS请求,用于基于Token文件或客户端证书等认证
#启动 scheduler 服务
cd /opt/k8s/
./scheduler.sh
ps aux | grep kube-scheduler#启动 controller-manager 服务
./controller-manager.sh
ps aux | grep kube-controller-manager
#生成kubectl连接集群的kubeconfig文件
./admin.sh#通过kubectl工具查看当前集群组件状态
kubectl get cs
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
etcd-2 Healthy {"health":"true"}
etcd-1 Healthy {"health":"true"}
etcd-0 Healthy {"health":"true"}#查看版本信息
kubectl version
1.9 部署 Worker Node 组件
//在 master01 节点上操作
#把 kubelet、kube-proxy 拷贝到 node 节点
cd /opt/k8s/kubernetes/server/bin
scp kubelet kube-proxy root@node1:/opt/kubernetes/bin/
scp kubelet kube-proxy root@node2:/opt/kubernetes/bin/
#上传kubeconfig.sh文件到/opt/k8s/kubeconfig目录中,生成kubelet初次加入集群引导kubeconfig文件和kube-proxy.kubeconfig文件
#kubeconfig 文件包含集群参数(CA 证书、API Server 地址),客户端参数(上面生成的证书和私钥),集群 context 上下文参数(集群名称、用户名)。Kubenetes 组件(如 kubelet、kube-proxy)通过启动时指定不同的 kubeconfig 文件可以切换到不同的集群,连接到 apiserver。
mkdir /opt/k8s/kubeconfigcd /opt/k8s/kubeconfig
chmod +x kubeconfig.sh
./kubeconfig.sh 192.168.10.80 /opt/k8s/k8s-cert/#把配置文件 bootstrap.kubeconfig、kube-proxy.kubeconfig 拷贝到 node 节点
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.10.18:/opt/kubernetes/cfg/
scp bootstrap.kubeconfig kube-proxy.kubeconfig root@192.168.10.19:/opt/kubernetes/cfg/#RBAC授权,使用户 kubelet-bootstrap 能够有权限发起 CSR 请求证书
kubectl create clusterrolebinding kubelet-bootstrap --clusterrole=system:node-bootstrapper --user=kubelet-bootstrap若执行失败,可先给kubectl绑定默认cluster-admin管理员集群角色,授权集群操作权限
kubectl create clusterrolebinding cluster-system-anonymous --clusterrole=cluster-admin --user=system:anonymous
//在 node01 节点上操作
#启动 kubelet 服务
cd /opt/
./kubelet.sh 192.168.2.12
ps aux | grep kubelet
//在 master01 节点上操作,通过 CSR 请求
#检查到 node01 节点的 kubelet 发起的 CSR 请求,Pending 表示等待集群给该节点签发证书
kubectl get csr
NAME AGE SIGNERNAME REQUESTOR CONDITION
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE 12s kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Pending#通过 CSR 请求
kubectl certificate approve node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE#Approved,Issued 表示已授权 CSR 请求并签发证书
kubectl get csr
NAME AGE SIGNERNAME REQUESTOR CONDITION
node-csr-duiobEzQ0R93HsULoS9NT9JaQylMmid_nBF3Ei3NtFE 2m5s kubernetes.io/kube-apiserver-client-kubelet kubelet-bootstrap Approved,Issued
#查看节点,由于网络插件还没有部署,节点会没有准备就绪 NotReady
kubectl get node
NAME STATUS ROLES AGE VERSION
192.168.10.18 NotReady <none> 108s v1.20.11//在 node01 节点上操作
#加载 ip_vs 模块
for i in $(ls /usr/lib/modules/$(uname -r)/kernel/net/netfilter/ipvs|grep -o "^[^.]*");do echo $i; /sbin/modinfo -F filename $i >/dev/null 2>&1 && /sbin/modprobe $i;done#启动proxy服务
cd /opt/
./proxy.sh 192.168.10.18
ps aux | grep kube-proxy
二、CNI 网络组件
CNI网络插件企业使用 插件 fannel和calico
1、 flannel配置很方便,功能简单是基于overlavy叠加(二层和三层网络)网络现实的,由于要进行封装和解封装性能会有一定的影响,同时具备策略配置3中模式其中只配置一种,根据需求或者运维自己的判断
① UDP UDP 用户态就是应用程序,封装 UDP协议TP封装,解封装的过程原理通过 flanneld服务进行封装
② vxlan 隧道模式 默认配置 利用额内核 vxlan 来封装 主机(host)之间传送数据包 好用通过在主机的路由表 中直接创建路由信息(subnet路由条目)到达目标性能好
③ HoST-wg host-gw 二层网络配置,它不支持云环境,配置麻烦
默认网段10.244.0.0/16
2、calico
功能强大 ,没有封装和解封装的过程 ,对性能影响较小,具有网络策略配置的能力,但是路由表维护起来比较为复杂默认网段 192.168.0.0/16模式:网络BGP IPIP
2.1 部署 flannel
//在 node01 节点上操作
#上传 cni-plugins-linux-amd64-v0.8.6.tgz 和 flannel.tar 到 /opt 目录中
cd /opt/
docker load -i flannel.tarmkdir /opt/cni/bin
tar zxvf cni-plugins-linux-amd64-v0.8.6.tgz -C /opt/cni/bin
//在 master01 节点上操作
#上传 kube-flannel.yml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
kubectl apply -f kube-flannel.ymlkubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
kube-flannel-ds-hjtc7 1/1 Running 0 7skubectl get nodes
NAME STATUS ROLES AGE VERSION
192.168.10.18 Ready <none> 81m v1.20.11
2.2 部署 Calico
//在 master01 节点上操作
#上传 calico.yaml 文件到 /opt/k8s 目录中,部署 CNI 网络
cd /opt/k8s
vim calico.yaml
#修改里面定义 Pod 的网络(CALICO_IPV4POOL_CIDR),需与前面 kube-controller-manager 配置文件指定的 cluster-cidr 网段一样
- name: CALICO_IPV4POOL_CIDR
value: "10.244.0.0/16" #Calico 默认使用的网段为 192.168.0.0/16
kubectl apply -f calico.yaml
kubectl get pods -n kube-system
NAME READY STATUS RESTARTS AGE
calico-kube-controllers-659bd7879c-4h8vk 1/1 Running 0 58s
calico-node-nsm6b 1/1 Running 0 58s
calico-node-tdt8v 1/1 Running 0 58s#等 Calico Pod 都 Running,节点也会准备就绪
kubectl get nodes
三、部署coredns
CoreDNS:可以为集群中的 service 资源创建一个域名 与 IP 的对应关系解析
//在所有 node 节点上操作
#上传 coredns.tar 到 /opt 目录中
cd /opt
docker load -i coredns.tar
//在 master01 节点上操作
#上传 coredns.yaml 文件到 /opt/k8s 目录中,部署 CoreDNS
cd /opt/k8s
kubectl apply -f coredns.yamlkubectl get pods -n k ube-system
NAME READY STATUS RESTARTS AGE
coredns-5ffbfd976d-j6shb 1/1 Running 0 32s#DNS 解析测试
kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
If you don't see a command prompt, try pressing enter.
/ # nslookup kubernetes
Server: 10.0.0.2
Address 1: 10.0.0.2 kube-dns.kube-system.svc.cluster.localName: kubernetes
Address 1: 10.0.0.1 kubernetes.default.svc.cluster.local
四、部署master02(192.168.2.14)
---------- master02 节点部署 ----------
//从 master01 节点上拷贝证书文件、各master组件的配置文件和服务管理文件到 master02 节点
scp -r /opt/etcd/ root@192.168.10.20:/opt/
scp -r /opt/kubernetes/ root@192.168.10.20:/opt
scp -r /root/.kube root@192.168.10.20:/root
scp /usr/lib/systemd/system/{kube-apiserver,kube-controller-manager,kube-scheduler}.service root@192.168.10.20:/usr/lib/systemd/system///修改配置文件kube-apiserver中的IP
vim /opt/kubernetes/cfg/kube-apiserver
KUBE_APISERVER_OPTS="--logtostderr=true \
--v=4 \
--etcd-servers=https://192.168.10.80:2379,https://192.168.10.18:2379,https://192.168.10.19:2379 \
--bind-address=192.168.10.20 \ #修改
--secure-port=6443 \
--advertise-address=192.168.10.20 \ #修改
......
五、负载均衡部署
------------------------------ 负载均衡部署 ------------------------------
//配置load balancer集群双机热备负载均衡(nginx实现负载均衡,keepalived实现双机热备)
##### 在lb01、lb02节点上操作 #####
//配置nginx的官方在线yum源,配置本地nginx的yum源
cat > /etc/yum.repos.d/nginx.repo << 'EOF'
[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
EOFyum install nginx -y
//修改nginx配置文件,配置四层反向代理负载均衡,指定k8s群集2台master的节点ip和6443端口
vim /etc/nginx/nginx.conf
events {
worker_connections 1024;
}#添加
stream {
log_format main '$remote_addr $upstream_addr - [$time_local] $status $upstream_bytes_sent';
access_log /var/log/nginx/k8s-access.log main;upstream k8s-apiserver {
server 192.168.10.80:6443;
server 192.168.10.20:6443;
}
server {
listen 6443;
proxy_pass k8s-apiserver;
}
}http {
......
//检查配置文件语法
nginx -t
//检查配置文件语法
nginx -t//启动nginx服务,查看已监听6443端口
systemctl start nginx
systemctl enable nginx
netstat -natp | grep nginx
//部署keepalived服务
yum install keepalived -y
nginx01与nginx02不同
//修改keepalived配置文件
vim /etc/keepalived/keepalived.conf
! Configuration File for keepalivedglobal_defs {
# 接收邮件地址
notification_email {
acassen@firewall.loc
failover@firewall.loc
sysadmin@firewall.loc
}
# 邮件发送地址
notification_email_from Alexandre.Cassen@firewall.loc
smtp_server 127.0.0.1
smtp_connect_timeout 30
router_id NGINX_MASTER #lb01节点的为 NGINX_MASTER,lb02节点的为 NGINX_BACKUP
}
//创建nginx状态检查脚本
vim /etc/nginx/check_nginx.sh
#!/bin/bash
#egrep -cv "grep|$$" 用于过滤掉包含grep 或者 $$ 表示的当前Shell进程ID,即脚本运行的当前进程ID号
count=$(ps -ef | grep nginx | egrep -cv "grep|$$")if [ "$count" -eq 0 ];then
systemctl stop keepalived
fi
chmod +x /etc/nginx/check_nginx.sh
//启动keepalived服务(一定要先启动了nginx服务,再启动keepalived服务)
systemctl start keepalived
systemctl enable keepalived
ip a #查看VIP是否生成
//修改node节点上的bootstrap.kubeconfig,kubelet.kubeconfig配置文件为VIP
cd /opt/kubernetes/cfg/
server: https://192.168.10.100:6443
vim kubelet.kubeconfig
server: https://192.168.10.100:6443
vim kube-proxy.kubeconfig
server: https://192.168.10.100:6443//重启kubelet和kube-proxy服务
systemctl restart kubelet.service
systemctl restart kube-proxy.service
//在 lb01 上查看 nginx 和 node 、 master 节点的连接状态
netstat -natp | grep nginx
tcp 0 0 0.0.0.0:6443 0.0.0.0:* LISTEN 84739/nginx: master
tcp 0 0 0.0.0.0:80 0.0.0.0:* LISTEN 84739/nginx: master
tcp 0 0 192.168.10.21:60382 192.168.10.20:6443 ESTABLISHED 84741/nginx: worker
tcp 0 0 192.168.10.100:6443 192.168.10.18:41650 ESTABLISHED 84741/nginx: worker
tcp 0 0 192.168.10.100:6443 192.168.10.19:49726 ESTABLISHED 84741/nginx: worker
tcp 0 0 192.168.10.21:35234 192.168.10.80:6443 ESTABLISHED 84741/nginx: worker
tcp 0 0 192.168.10.100:6443 192.168.10.18:41648 ESTABLISHED 84741/nginx: worker
tcp 0 0 192.168.10.100:6443 192.168.10.19:49728 ESTABLISHED 84742/nginx: worker
tcp 0 0 192.168.10.100:6443 192.168.10.18:41646 ESTABLISHED 84741/nginx: worker
tcp 0 0 192.168.10.21:32786 192.168.10.20:6443 ESTABLISHED 84741/nginx: worker
tcp 0 0 192.168.10.100:6443 192.168.10.18:41656 ESTABLISHED 84741/nginx: worker
tcp 0 0 192.168.10.21:60378 192.168.10.20:6443 ESTABLISHED 84741/nginx: worker
tcp 0 0 192.168.10.21:32794 192.168.10.20:6443 ESTABLISHED 84741/nginx: worker
tcp 0 0 192.168.10.100:6443 192.168.10.19:49724 ESTABLISHED 84741/nginx: worker
tcp 0 0 192.168.10.21:35886 192.168.10.80:6443 ESTABLISHED 84741/nginx: worker
tcp 0 0 192.168.10.100:6443 192.168.10.19:51372 ESTABLISHED 84742/nginx: worker
tcp 0 0 192.168.10.100:6443 192.168.10.19:49722 ESTABLISHED 84741/nginx: worker
tcp 0 0 192.168.10.100:6443 192.168.10.19:49702 ESTABLISHED 84741/nginx: worker
##### 在 master01 节点上操作 #####
//测试创建pod
kubectl run nginx --image=nginx//查看Pod的状态信息
kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-dbddb74b8-nf9sk 0/1 ContainerCreating 0 33s #正在创建中kubectl get pods
NAME READY STATUS RESTARTS AGE
nginx-dbddb74b8-nf9sk 1/1 Running 0 80s #创建完成,运行中kubectl get pods -o wide
NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE
nginx-dbddb74b8-26r9l 1/1 Running 0 10m 172.17.36.2 192.168.80.15 <none>
//READY为1/1,表示这个Pod中有1个容器//在对应网段的node节点上操作,可以直接使用浏览器或者curl命令访问
curl 172.17.36.2//这时在master01节点上查看nginx日志
kubectl logs nginx-dbddb74b8-nf9sk
六、 部署 Dashboard
Dashboard 介绍
仪表板是基于Web的Kubernetes用户界面。您可以使用仪表板将容器化应用程序部署到Kubernetes集群,对容器化应用程序进行故障排除,并管理集群本身及其伴随资源。您可以使用仪表板来概述群集上运行的应用程序,以及创建或修改单个Kubernetes资源(例如deployment,job,daemonset等)。例如,您可以使用部署向导扩展部署,启动滚动更新,重新启动Pod或部署新应用程序。仪表板还提供有关群集中Kubernetes资源状态以及可能发生的任何错误的信息。
在node1、2上
[root@node02 opt]#docker load -i dashboard.tar
69e42300d7b5: Loading layer [==================================================>] 224.6MB/224.6MB
Loaded image: kubernetesui/dashboard:v2.0.0
[root@node02 opt]#docker load -i metrics-scraper.tar
57757cd7bb95: Loading layer [==================================================>] 238.6kB/238.6kB
14f2e8fb1e35: Loading layer [==================================================>] 36.7MB/36.7MB
52b345e4c8e0: Loading layer [==================================================>] 2.048kB/2.048kB
Loaded image: kubernetesui/metrics-scraper:v1.0.4
[root@node02 opt]#
//在 master01 节点上操作
#上传 recommended.yaml 文件到 /opt/k8s 目录中
cd /opt/k8s
vim recommended.yaml
#默认Dashboard只能集群内部访问,修改Service为NodePort类型,暴露到外部:
kind: Service
apiVersion: v1
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
namespace: kubernetes-dashboard
spec:
ports:
- port: 443
targetPort: 8443
nodePort: 30001 #添加
type: NodePort #添加
selector:
k8s-app: kubernetes-dashboardkubectl apply -f recommended.yaml
#创建service account并绑定默认cluster-admin管理员集群角色
kubectl create serviceaccount dashboard-admin -n kube-system
kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin
kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')#使用输出的token登录Dashboard
https://NodeIP:30001
更多推荐
所有评论(0)