1.2ASK的调制原理

2ASK调制原理如下图所示,基带码元d(t)和高频载波相乘实现2ASK信号的调制。
在这里插入图片描述
波形图如下图所示
在这里插入图片描述

2.2ASK的解调原理

2ASK的解调原理如下图所示,2ASK信号经过信道传输之后,再和载波相乘,然后经过低通滤波后抽样判决恢复出原始基带码元信号。
在这里插入图片描述

3.2ASK的代码

clear all;                  % 清除所有变量
close all;                  % 关闭所有窗口
clc;                        % 清屏
%% 基本参数
M=10;                       % 产生码元数    
L=100;                      % 每码元复制L次,每个码元采样次数
Ts=0.001;                   % 每个码元的宽度,即码元的持续时间
Rb=1/Ts;                    % 码元速率1K
dt=Ts/L;                    % 采样间隔
TotalT=M*Ts;                % 总时间
t=0:dt:TotalT-dt;           % 时间
Fs=1/dt;                    % 采样间隔的倒数即采样频率

%% 产生单极性波形
wave=randi([0,1],1,M);      % 产生二进制随机码,M为码元个数
fz=ones(1,L);               % 定义复制的次数L,L为每码元的采样点数
x1=wave(fz,:);              % 将原来wave的第一行复制L次,称为L*M的矩阵
jidai=reshape(x1,1,L*M);    % 产生单极性不归零矩形脉冲波形,将刚得到的L*M矩阵,按列重新排列形成1*(L*M)的矩阵

%% 2ASK调制
fc=10000;                   % 载波频率10kHz       
zb=cos(2*pi*fc*t);          % 载波
ask2=jidai.*zb;             % 2ASK的模拟调制 
figure(1);                  % 绘制第1幅图
subplot(211);               % 窗口分割成2*1的,当前是第1个子图 
plot(t,jidai,'LineWidth',2);% 绘制基带码元波形,线宽为2
title('基带信号波形');      % 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
axis([0,TotalT,-0.1,1.1])   % 坐标范围限制

subplot(212)                % 窗口分割成2*1的,当前是第2个子图 
plot(t,ask2,'LineWidth',2); % 绘制2ASK的波形 
title('2ASK信号波形')   % 标题
axis([0,TotalT,-1.1,1.1]);  % 坐标范围限制
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
%% 信号经过高斯白噪声信道
tz=awgn(ask2,20);           % 信号ask2中加入白噪声,信噪比为SNR=20dB
figure(2);                  % 绘制第2幅图
subplot(211);               % 窗口分割成2*1的,当前是第1个子图 
plot(t,tz,'LineWidth',2);   % 绘制2ASK信号加入白噪声的波形
axis([0,TotalT,-1.5,1.5]);  % 坐标范围设置
title('通过高斯白噪声信道后的信号');% 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
%% 解调部分
tz=tz.*zb;                  % 相干解调,乘以相干载波
subplot(212)                % 窗口分割成2*1的,当前是第2个子图 
plot(t,tz,'LineWidth',1)    % 绘制乘以相干载波后的信号
axis([0,TotalT,-0.5,1.5]);  % 设置坐标范围
title("乘以相干载波后的信号")% 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
%% 加噪信号经过滤波器
% 低通滤波器设计
fp=2*Rb;                    % 低通滤波器截止频率,乘以2是因为下面要将模拟频率转换成数字频率wp=Rb/(Fs/2)
b=fir1(30, fp/Fs, boxcar(31));% 生成fir滤波器系统函数中分子多项式的系数
% fir1函数三个参数分别是阶数,数字截止频率,滤波器类型
% 这里是生成了30(31个抽头系数)的矩形窗滤波器
[h,w]=freqz(b, 1,512);      % 生成fir滤波器的频率响应
% freqz函数的三个参数分别是滤波器系统函数的分子多项式的系数,分母多项式的系数(fir滤波器分母系数为1)和采样点数(默认)512
lvbo=fftfilt(b,tz);         % 对信号进行滤波,tz是等待滤波的信号,b是fir滤波器的系统函数的分子多项式系数
figure(3);                  % 绘制第3幅图  
subplot(311);               % 窗口分割成3*1的,当前是第1个子图 
plot(w/pi*Fs/2,20*log(abs(h)),'LineWidth',2); % 绘制滤波器的幅频响应
title('低通滤波器的频谱');  % 标题
xlabel('频率/Hz');          % x轴标签
ylabel('幅度/dB');          % y轴标签

subplot(312)                % 窗口分割成3*1的,当前是第2个子图 
plot(t,lvbo,'LineWidth',2); % 绘制经过低通滤波器后的信号
axis([0,TotalT,-0.1,1.1]);  % 设置坐标范围
title("经过低通滤波器后的信号");% 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签

%% 抽样判决
k=0.25;                     % 设置抽样限值
pdst=1*(lvbo>0.25);         % 滤波后的向量的每个元素和0.25进行比较,大于0.251,否则为0
subplot(313)                % 窗口分割成2*1的,当前是第3个子图 
plot(t,pdst,'LineWidth',2)  % 画出经过抽样判决后的信号
axis([0,TotalT,-0.1,1.1]);  % 设置坐标范用
title("经过抽样判决后的信号")% 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签

%% 绘制频谱
%% 2ASK信号频谱
T=t(end);                   % 时间
df=1/T;                     % 频谱分辨率
N=length(ask2);             % 采样长度
f=(-N/2:N/2-1)*df;          % 频率范围
sf=fftshift(abs(fft(ask2)));%2ASK信号采用快速傅里叶变换并将0-fs频谱移动到-fs/2-fs/2
figure(4)                   % 绘制第4幅图
subplot(211)                % 窗口分割成2*1的,当前是第1个子图 
plot(f,sf,'LineWidth',2)    % 绘制调制信号频谱
title("2ASK信号频谱")       % 标题
xlabel('频率/Hz');          % x轴标签
ylabel('幅度');             % y轴标签

%% 信源频谱
mf=fftshift(abs(fft(jidai)));%对信源信号采用快速傅里叶变换并移到矩阵中心
subplot(212);               % 窗口分割成2*1的,当前是第2个子图 
plot(f,mf,'LineWidth',2);   % 绘制信源频谱波形
title("基带信号频谱");      % 标题
xlabel('频率/Hz');          % x轴标签
ylabel('幅度');             % y轴标签

%% 乘以相干载波后的频谱
mmf=fftshift(abs(fft(tz))); % 对相干载波信号采用快速傅里叶变换并移到矩阵中心
figure(5)                   % 绘制第5幅图
subplot(211);               % 窗口分割成2*1的,当前是第1个子图 
plot(f,mmf,'LineWidth',2)   % 画出乘以相干载波后的频谱
title("乘以相干载波后的频谱")
xlabel('频率/Hz');          % x轴标签
ylabel('幅度');             % y轴标签

%% 经过低通滤波后的频谱
dmf=fftshift(abs(fft(lvbo)));%对低通滤波信号采用快速傅里叶变换并移到矩阵中心
subplot(212);               % 窗口分割成2*1的,当前是第2个子图 
plot(f,dmf,'LineWidth',2)   % 画出经过低通滤波后的频谱
title("经过低通滤波后的频谱");
xlabel('频率/Hz');          % x轴标签
ylabel('幅度');             % y轴标签

4.结果图

结果图中2ASK信号是经过信道,加了高斯白噪声的。
如果不想加噪声,把下面这行代码注释即可。

tz=awgn(ask2,20);           % 信号ask2中加入白噪声,信噪比为SNR=20dB

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5.特点

优点:实现简单。
缺点:抗噪声能力差。

6.代码改进

上述代码在抽样判决时不是在码元中间时刻抽样,效果差点意思,以下代码是改进后的2ASK代码。
2ASK代码

clear all;                  % 清除所有变量
close all;                  % 关闭所有窗口
clc;                        % 清屏
%% 基本参数
M=10;                       % 产生码元数    
L=100;                      % 每码元复制L次,每个码元采样次数
Ts=0.001;                   % 每个码元的宽度,即码元的持续时间
Rb=1/Ts;                    % 码元速率1K
TotalT=M*Ts;                % 总时间
Fs=1e5;
L=Fs*Ts;
dt=Ts/L;
t=0:dt:TotalT-dt;           % 时间
%% 产生单极性波形
wave=randi([0,1],1,M);      % 产生二进制随机码,M为码元个数
fz=ones(1,L);               % 定义复制的次数L,L为每码元的采样点数
x1=wave(fz,:);              % 将原来wave的第一行复制L次,称为L*M的矩阵
jidai=reshape(x1,1,L*M);    % 产生单极性不归零矩形脉冲波形,将刚得到的L*M矩阵,按列重新排列形成1*(L*M)的矩阵

%% 2ASK调制
fc=10000;                   % 载波频率10kHz       
zb=cos(2*pi*fc*t);          % 载波
ask2=jidai.*zb;             % 2ASK的模拟调制 
figure(1);                  % 绘制第1幅图
subplot(211);               % 窗口分割成2*1的,当前是第1个子图 
plot(t,jidai,'LineWidth',2);% 绘制基带码元波形,线宽为2
title('基带信号波形');      % 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
axis([0,TotalT,-0.1,1.1])   % 坐标范围限制

subplot(212)                % 窗口分割成2*1的,当前是第2个子图 
plot(t,ask2,'LineWidth',2); % 绘制2ASK的波形 
title('2ASK信号波形')   % 标题
axis([0,TotalT,-1.1,1.1]);  % 坐标范围限制
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
%% 信号经过高斯白噪声信道
tz=awgn(ask2,20);           % 信号ask2中加入白噪声,信噪比为SNR=20dB
figure(2);                  % 绘制第2幅图
subplot(211);               % 窗口分割成2*1的,当前是第1个子图 
plot(t,tz,'LineWidth',2);   % 绘制2ASK信号加入白噪声的波形
axis([0,TotalT,-1.5,1.5]);  % 坐标范围设置
title('通过高斯白噪声信道后的信号');% 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
%% 解调部分
tz=tz.*zb;                  % 相干解调,乘以相干载波
subplot(212)                % 窗口分割成2*1的,当前是第2个子图 
plot(t,tz,'LineWidth',1)    % 绘制乘以相干载波后的信号
axis([0,TotalT,-0.5,1.5]);  % 设置坐标范围
title("乘以相干载波后的信号")% 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签
%% 加噪信号经过滤波器
% 低通滤波器设计
fp=2*Rb;                    % 低通滤波器截止频率,乘以2是因为下面要将模拟频率转换成数字频率wp=Rb/(Fs/2)
b=fir1(30, fp/Fs, boxcar(31));% 生成fir滤波器系统函数中分子多项式的系数
% fir1函数三个参数分别是阶数,数字截止频率,滤波器类型
% 这里是生成了30(31个抽头系数)的矩形窗滤波器
[h,w]=freqz(b, 1,512);      % 生成fir滤波器的频率响应
% freqz函数的三个参数分别是滤波器系统函数的分子多项式的系数,分母多项式的系数(fir滤波器分母系数为1)和采样点数(默认)512
lvbo=fftfilt(b,tz);         % 对信号进行滤波,tz是等待滤波的信号,b是fir滤波器的系统函数的分子多项式系数
figure(3);                  % 绘制第3幅图  
subplot(311);               % 窗口分割成3*1的,当前是第1个子图 
plot(w/pi*Fs/2,20*log(abs(h)),'LineWidth',2); % 绘制滤波器的幅频响应
title('低通滤波器的频谱');  % 标题
xlabel('频率/Hz');          % x轴标签
ylabel('幅度/dB');          % y轴标签

subplot(312)                % 窗口分割成3*1的,当前是第2个子图 
plot(t,lvbo,'LineWidth',2); % 绘制经过低通滤波器后的信号
axis([0,TotalT,-0.1,1.1]);  % 设置坐标范围
title("经过低通滤波器后的信号");% 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签

%% 抽样判决
pdst=1*(lvbo>0.25);         % 滤波后的向量的每个元素和0.25进行比较,大于0.251,否则为0
% 取码元中间时刻值为判决值
panjue=[];

for j=(L/2):L:(L*M)
    if pdst(j)>0
        panjue=[panjue,1];
    else
        panjue=[panjue,0];
    end
end
x2=panjue(fz,:);              % 将原来panjue的第一行复制L次,称为L*M的矩阵
panjue_zong=reshape(x2,1,L*M);% 将刚得到的L*M矩阵,按列重新排列形成1*(L*M)的矩阵

subplot(313)                % 窗口分割成2*1的,当前是第3个子图 
plot(t,panjue_zong,'LineWidth',2)  % 画出经过抽样判决后的信号
axis([0,TotalT,-0.1,1.1]);  % 设置坐标范用
title("经过抽样判决后的信号")% 标题
xlabel('时间/s');           % x轴标签
ylabel('幅度');             % y轴标签

%% 绘制频谱
%% 2ASK信号频谱
T=t(end);                   % 时间
df=1/T;                     % 频谱分辨率
N=length(ask2);             % 采样长度
% f=(-N/2:N/2-1)*df;          % 频率范围
f=linspace(-Fs/2,Fs/2,N);
sf=fftshift(abs(fft(ask2)));%2ASK信号采用快速傅里叶变换并将0-fs频谱移动到-fs/2-fs/2
figure(4)                   % 绘制第4幅图
subplot(211)                % 窗口分割成2*1的,当前是第1个子图 
plot(f,sf,'LineWidth',2)    % 绘制调制信号频谱
title("2ASK信号频谱")       % 标题
xlabel('频率/Hz');          % x轴标签
ylabel('幅度');             % y轴标签

%% 信源频谱
mf=fftshift(abs(fft(jidai)));%对信源信号采用快速傅里叶变换并移到矩阵中心
subplot(212);               % 窗口分割成2*1的,当前是第2个子图 
plot(f,mf,'LineWidth',2);   % 绘制信源频谱波形

title("基带信号频谱");      % 标题
xlabel('频率/Hz');          % x轴标签
ylabel('幅度');             % y轴标签

%% 乘以相干载波后的频谱
mmf=fftshift(abs(fft(tz))); % 对相干载波信号采用快速傅里叶变换并移到矩阵中心
figure(5)                   % 绘制第5幅图
subplot(211);               % 窗口分割成2*1的,当前是第1个子图 
plot(f,mmf,'LineWidth',2)   % 画出乘以相干载波后的频谱
title("乘以相干载波后的频谱")
xlabel('频率/Hz');          % x轴标签
ylabel('幅度');             % y轴标签

%% 经过低通滤波后的频谱
dmf=fftshift(abs(fft(lvbo)));%对低通滤波信号采用快速傅里叶变换并移到矩阵中心
subplot(212);               % 窗口分割成2*1的,当前是第2个子图 
plot(f,dmf,'LineWidth',2)   % 画出经过低通滤波后的频谱
title("经过低通滤波后的频谱");
xlabel('频率/Hz');          % x轴标签
ylabel('幅度');             % y轴标签

7. BASK的误码率曲线

BASK的误码率曲线的代码可以在此链接免费下载BASK误码率曲线

8.BASK的GUI界面

BASK的GUI界面可以通过此链接获取BASK的GUI界面
BASK调制解调的MATLAB GUI,包括调制解调部分和误码率曲线以及理论和仿真误码率曲线的对比

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐