Kubernetes(2)
k8s
介绍组件有哪些、对象在k8s中的表示和管理,不涉及对象的介绍(移步Kubernetes(1)).
控制平面组件
Control Plane Components.
控制平面组件会为集群做出全局决策,比如资源的调度。 以及检测和响应集群事件,例如当不满足部署的
replicas
字段时, 要启动新的 pod)。控制平面组件可以在集群中的任何节点上运行。 然而,为了简单起见,设置脚本通常会在同一个计算机上启动所有控制平面组件, 并且不会在此计算机上运行用户容器。
kube-apiserver
API 服务器是 Kubernetes 控制平面的组件, 该组件负责公开了 Kubernetes API,负责处理接受请求的工作。 API 服务器是 Kubernetes 控制平面的前端。
etcd
etcd
是兼顾一致性与高可用性的键值数据库,可以作为保存 Kubernetes 所有集群数据的后台数据库。
kube-scheduler
kube-scheduler
是控制平面的组件, 负责监视新创建的、未指定运行节点(node)的 Pods, 并选择节点来让 Pod 在上面运行。
kube-controller-manage
kube-controller-manager 是控制平面的组件, 负责运行控制器进程。
从逻辑上讲, 每个控制器都是一个单独的进程, 但是为了降低复杂性,它们都被编译到同一个可执行文件,并在同一个进程中运行。
这些控制器包括:
- 节点控制器(Node Controller):负责在节点出现故障时进行通知和响应
- 任务控制器(Job Controller):监测代表一次性任务的 Job 对象,然后创建 Pods 来运行这些任务直至完成
- 端点控制器(Endpoints Controller):填充端点(Endpoints)对象(即加入 Service 与 Pod)
- 服务帐户和令牌控制器(Service Account & Token Controllers):为新的命名空间创建默认帐户和 API 访问令牌
cloud-controller-manager
云控制器管理器(Cloud Controller Manager)允许你将你的集群连接到云提供商的 API 之上, 并将与该云平台交互的组件同与你的集群交互的组件分离开来。
Node组件
节点组件会在每个节点上运行,负责维护运行的 Pod 并提供 Kubernetes 运行环境
kubelet
kubelet
会在集群中每个节点(node)上运行, 它保证容器(containers)都运行在 Pod 中 。且确保这些容器都处于运行且健康状态。
节点控制器是 Kubernetes 控制面组件, 管理节点的方方面面。
节点控制器在节点的生命周期中扮演多个角色。
第一个是当节点注册时为它分配一个 CIDR 区段(如果启用了 CIDR 分配)。
第二个是保持节点控制器内的节点列表与云服务商所提供的可用机器列表同步。 如果在云环境下运行,只要某节点不健康,节点控制器就会询问云服务是否节点的虚拟机仍可用。 如果不可用,节点控制器会将该节点从它的节点列表删除。
第三个是监控节点的健康状况。节点控制器负责:
- 在节点不可达的情况下,在 Node 的
.status
中更新Ready
状况。 在这种情况下,节点控制器将 NodeReady 状况更新为Unknown
。 - 如果节点仍然无法访问:对于不可达节点上的所有 Pod 触发 API 发起的逐出操作。 默认情况下,节点控制器在将节点标记为
Unknown
后等待 5 分钟提交第一个驱逐请求。
默认情况下,节点控制器每 5 秒检查一次节点状态,可以使用 kube-controller-manager
组件上的 --node-monitor-period
参数来配置周期。
kube-proxy
kube-proxy 是集群中每个节点(node)所上运行的网络代理, 实现 Kubernetes 服务(Service) 概念的一部分。
kube-proxy 维护节点上的一些网络规则, 这些网络规则会允许从集群内部或外部的网络会话与 Pod 进行网络通信。
如果操作系统提供了可用的数据包过滤层,则 kube-proxy 会通过它来实现网络规则。 否则,kube-proxy 仅做流量转发
容器运行时(Container Runtime)
容器运行环境是负责运行容器的软件。
对象
k8s使用其表示整个集群状态的实体,通常使用yaml文件表示
旦创建该对象,Kubernetes 系统将不断工作以确保该对象存在。 通过创建对象,你就是在告知 Kubernetes 系统,你想要的集群工作负载状态看起来应是什么样子的 。
具体例子:
Kubernetes 中的 Deployment 对象能够表示运行在集群中的应用。 当创建 Deployment 时,可能会去设置 Deployment 的 spec,以指定该应用要有 3 个副本运行。 Kubernetes 系统读取 Deployment 的 spec, 并启动我们所期望的应用的 3 个实例 —— 更新状态以与规约相匹配。 如果这些实例中有的失败了(一种状态变更),Kubernetes 系统会通过执行修正操作来响应 spec 和状态间的不一致 —— 意味着它会启动一个新的实例来替换 。
apiVersion: apps/v1
kind: Deployment
metadata:
name: nginx-deployment
spec:
selector:
matchLabels:
app: nginx
replicas: 2 # 告知 Deployment 运行 2 个与该模板匹配的 Pod
template:
metadata:
labels:
app: nginx
spec:
containers:
- name: nginx
image: nginx:1.14.2
ports:
- containerPort: 80
#创建Deployment
#apply -f创建指定文件中定义的所有对象
kubectl apply -f https://k8s.io/examples/application/deployment.yaml
字段介绍:
apiVersion
- 创建该对象所使用的 Kubernetes API 的版本kind
- 想要创建的对象的类别metadata
- 帮助唯一标识对象的一些数据,包括一个name
字符串、UID
和可选的namespace
spec
- 你所期望的该对象的状态
声明式管理对象
创建
使用
kubectl apply
来创建指定目录中配置文件所定义的所有对象,除非对应对象已经存在。kubectl apply -f <目录>/
使用
kubectl get
打印现时配置:kubectl get -f https://k8s.io/examples/application/simple_deployment.yaml -o yaml
输出显示注解
kubectl.kubernetes.io/last-applied-configuration
被写入到 现时配置中,并且其内容与配置文件相同:kind: Deployment metadata: annotations: # ... # This is the json representation of simple_deployment.yaml # It was written by kubectl apply when the object was created kubectl.kubernetes.io/last-applied-configuration: | {"apiVersion":"apps/v1","kind":"Deployment", "metadata":{"annotations":{},"name":"nginx-deployment","namespace":"default"}, "spec":{"minReadySeconds":5,"selector":{"matchLabels":{"app":nginx}},"template":{"metadata":{"labels":{"app":"nginx"}}, "spec":{"containers":[{"image":"nginx:1.14.2","name":"nginx", "ports":[{"containerPort":80}]}]}}}} # ... spec: # ... minReadySeconds: 5 selector: matchLabels: # ... app: nginx template: metadata: # ... labels: app: nginx spec: containers: - image: nginx:1.14.2 # ... name: nginx ports: - containerPort: 80 # ... # ... # ... # ...
扩容
通过
kubectl scale
命令直接更新现时配置中的replicas
字段。 这一命令没有使用kubectl apply
:kubectl scale deployment/nginx-deployment --replicas=2
使用
kubectl get
来打印现时配置:kubectl get deployment nginx-deployment -o yaml
输出显示,
replicas
字段已经被设置为 2,而last-applied-configuration
注解中 并不包含replicas
字段 *这是因为更新并不是通过 kubectl apply 来执行的* 。
更新
现在更新
simple_deployment.yaml
配置文件,将镜像文件从nginx:1.14.2
更改为nginx:1.16.1
,同时删除minReadySeconds
字段,修改配置文件后kubectl diff -f https://k8s.io/examples/application/update_deployment.yaml kubectl apply -f https://k8s.io/examples/application/update_deployment.yaml
kubectl get -f https://k8s.io/examples/application/update_deployment.yaml -o yaml
输出显示现时配置中发生了以下更改:
字段
replicas
保留了kubectl scale
命令所设置的值:2; 之所以该字段被保留是因为配置文件中并没有设置replicas
。字段
image
的内容已经从nginx:1.14.2
更改为nginx:1.16.1
。注解
last-applied-configuration
内容被更改为新的镜像名称。字段
minReadySeconds
被移除。注解
last-applied-configuration
中不再包含minReadySeconds
字段。apiVersion: apps/v1 kind: Deployment metadata: annotations: # ... # 注解中包含更新后的镜像 nginx 1.16.1 # 但是其中并不包含更改后的 replicas 值 2 kubectl.kubernetes.io/last-applied-configuration: | {"apiVersion":"apps/v1","kind":"Deployment", "metadata":{"annotations":{},"name":"nginx-deployment","namespace":"default"}, "spec":{"selector":{"matchLabels":{"app":nginx}},"template":{"metadata":{"labels":{"app":"nginx"}}, "spec":{"containers":[{"image":"nginx:1.16.1","name":"nginx", "ports":[{"containerPort":80}]}]}}}} # ... spec: replicas: 2 # 由 `kubectl scale` 设置,被 `kubectl apply` 命令忽略 # minReadySeconds 被 `kubectl apply` 清除 # ... selector: matchLabels: # ... app: nginx template: metadata: # ... labels: app: nginx spec: containers: - image: nginx:1.16.1 # 由 `kubectl apply` 设置 # ... name: nginx ports: - containerPort: 80 # ... # ... # ... # ...
删除
使用指令式命令来手动删除对象是建议的方法,因为这种方法更为明确地给出了 要删除的内容是什么,且不容易造成用户不小心删除了其他对象的情况。
kubectl delete -f <文件名>
命名空间
在 Kubernetes 中,名字空间(Namespace) 提供一种机制,将同一集群中的资源划分为相互隔离的组。 同一名字空间内的资源名称要唯一,但跨名字空间时没有这个要求。
适用场景:
名字空间适用于存在很多跨多个团队或项目的用户的场景。对于只有几到几十个用户的集群,根本不需要创建或考虑名字空间。当需要名字空间提供的功能时,请开始使用它们。
名字空间为名称提供了一个范围。资源的名称需要在名字空间内是唯一的,但不能跨名字空间。 名字空间不能相互嵌套,每个 Kubernetes 资源只能在一个名字空间中。
名字空间是在多个用户之间划分集群资源的一种方法(通过资源配额)。
查看命名空间:
kubectl get namespace
NAME STATUS AGE
default Active 1d
kube-node-lease Active 1d
kube-public Active 1d
kube-system Active 1d
Kubernetes 会创建四个初始名字空间:
default
没有指明使用其它名字空间的对象所使用的默认名字空间kube-system
Kubernetes 系统创建对象所使用的名字空间kube-public
这个名字空间是自动创建的,所有用户(包括未经过身份验证的用户)都可以读取它。 这个名字空间主要用于集群使用,以防某些资源在整个集群中应该是可见和可读的。 这个名字空间的公共方面只是一种约定,而不是要求。kube-node-lease
此名字空间用于与各个节点相关的 租约(Lease)对象。 节点租期允许 kubelet 发送心跳,由此控制面能够检测到节点故障
查看哪些 Kubernetes 资源在名字空间中,哪些不在名字空间中:
# 位于名字空间中的资源
kubectl api-resources --namespaced=true
# 不在名字空间中的资源
kubectl api-resources --namespaced=false
创建
kubectl config set-context --current --namespace=<名字空间名称>
# 验证
kubectl config view --minify | grep namespace:
标签
例如,这是一个有
environment: production
和app: nginx
标签的 Pod 配置文件:apiVersion: v1 kind: Pod metadata: name: label-demo labels: environment: production app: nginx spec: containers: - name: nginx image: nginx:1.14.2 ports: - containerPort: 80
基于等值的标签选择算符可以这么写:
kubectl get pods -l environment=production,tier=frontend
基于集合的需求:
kubectl get pods -l 'environment in (production),tier in (frontend)'
基于集合的或操作:
kubectl get pods -l 'environment in (production, qa)'
支持基于集合需求的资源:Service、ReplicationController、Deployment、ReplicaSet
selector:
matchLabels:
component: redis
matchExpressions:
- {key: tier, operator: In, values: [cache]}
- {key: environment, operator: NotIn, values: [dev]}
matchLabels 是由 {key,value} 对组成的映射。 matchLabels 映射中的单个 {key,value} 等同于 matchExpressions 的元素, 其 key 字段为 "key",operator 为 "In",而 values 数组仅包含 "value"。 matchExpressions 是 Pod 选择算符需求的列表。 有效的运算符包括 In、NotIn、Exists 和 DoesNotExist。 在 In 和 NotIn 的情况下,设置的值必须是非空的。 来自 matchLabels 和 matchExpressions 的所有要求都按逻辑与的关系组合到一起 -- 它们必须都满足才能匹配。
注解
你可以使用标签或注解将元数据附加到 Kubernetes 对象。 标签可以用来选择对象和查找满足某些条件的对象集合。 相反,注解不用于标识和选择对象。 注解中的元数据,可以很小,也可以很大,可以是结构化的,也可以是非结构化的,能够包含标签不允许的字符。
例如:
"metadata": { "annotations": { "key1" : "value1", "key2" : "value2" } }
什么情况下使用注解呢?
-
声明性配置所管理的字段。 将这些字段附加为注解,能够将它们与客户端或服务端设置的默认值、 自动生成的字段以及通过自动调整大小或自动伸缩系统设置的字段区分开来。
-
构建、发布或镜像信息(如时间戳、发布 ID、Git 分支、PR 数量、镜像哈希、仓库地址)。
-
指向日志记录、监控、分析或审计仓库的指针。
-
可用于调试目的的客户端库或工具信息:例如,名称、版本和构建信息。
-
用户或者工具/系统的来源信息,例如来自其他生态系统组件的相关对象的 URL。
-
轻量级上线工具的元数据信息:例如,配置或检查点。
-
负责人员的电话或呼机号码,或指定在何处可以找到该信息的目录条目,如团队网站。
-
从用户到最终运行的指令,以修改行为或使用非标准功能。
下面是一个 Pod 的配置文件,其注解中包含 imageregistry: https://hub.docker.com/
:
apiVersion: v1
kind: Pod
metadata:
name: annotations-demo
annotations:
imageregistry: "https://hub.docker.com/"
spec:
containers:
- name: nginx
image: nginx:1.7.9
ports:
- containerPort: 80
字段选择器
下面这个 kubectl
命令将筛选出 status.phase
字段值为 Running
的所有 Pod:
kubectl get pods --field-selector status.phase=Running
下面这个 kubectl
命令将筛选所有不属于 default
命名空间的 Kubernetes 服务:
kubectl get services --all-namespaces --field-selector metadata.namespace!=default
链式选择:
下面这个 kubectl
命令将筛选 status.phase
字段不等于 Running
同时 spec.restartPolicy
字段等于 Always
的所有 Pod:
kubectl get pods --field-selector=status.phase!=Running,spec.restartPolicy=Always
不同资源类型选择:
下面这个 kubectl
命令将筛选出所有不在 default
命名空间中的 StatefulSet 和 Service:
kubectl get statefulsets,services --all-namespaces --field-selector metadata.namespace!=default
节点
例如,如果你尝试使用下面的 JSON 对象来创建 Node 对象:
{
"kind": "Node",
"apiVersion": "v1",
"metadata": {
//必须是合法的DNS子域名
"name": "10.240.79.157",
"labels": {
"name": "my-first-k8s-node"
}
}
}
一个节点的状态包含以下信息:
你可以使用 kubectl
来查看节点状态和其他细节信息:
kubectl describe node <节点名称>
地址
这些字段的用法取决于你的云服务商或者物理机配置。
- HostName:由节点的内核报告。可以通过 kubelet 的
--hostname-override
参数覆盖。 - ExternalIP:通常是节点的可外部路由(从集群外可访问)的 IP 地址。
- InternalIP:通常是节点的仅可在集群内部路由的 IP 地址
状况
conditions
字段描述了所有 Running
节点的状况。状况的示例包括:
节点状况 | 描述 |
---|---|
Ready | 如节点是健康的并已经准备好接收 Pod 则为 True ;False 表示节点不健康而且不能接收 Pod;Unknown 表示节点控制器在最近 node-monitor-grace-period 期间(默认 40 秒)没有收到节点的消息 |
DiskPressure | True 表示节点存在磁盘空间压力,即磁盘可用量低, 否则为 False |
MemoryPressure | True 表示节点存在内存压力,即节点内存可用量低,否则为 False |
PIDPressure | True 表示节点存在进程压力,即节点上进程过多;否则为 False |
NetworkUnavailable | True 表示节点网络配置不正确;否则为 False |
例如,以下 JSON 结构描述了一个健康节点:
"conditions": [
{
"type": "Ready",
"status": "True",
"reason": "KubeletReady",
"message": "kubelet is posting ready status",
"lastHeartbeatTime": "2019-06-05T18:38:35Z",
"lastTransitionTime": "2019-06-05T11:41:27Z"
}
]
容量与可分配
这两个值描述节点上的可用资源:CPU、内存和可以调度到节点上的 Pod 的个数上限。
capacity
块中的字段标示节点拥有的资源总量。 allocatable
块指示节点上可供普通 Pod 消耗的资源量。
信息
Info 指的是节点的一般信息,如内核版本、Kubernetes 版本(kubelet
和 kube-proxy
版本)、 容器运行时详细信息,以及节点使用的操作系统。 kubelet
从节点收集这些信息并将其发布到 Kubernetes API。
心跳
对于节点,有两种形式的心跳:
与 Node 的 .status
更新相比,Lease 是一种轻量级资源。 使用 Lease 来表达心跳在大型集群中可以减少这些更新对性能的影响。
kubelet 负责创建和更新节点的 .status
,以及更新它们对应的 Lease。
- 当节点状态发生变化时,或者在配置的时间间隔内没有更新事件时,kubelet 会更新
.status
。.status
更新的默认间隔为 5 分钟(比节点不可达事件的 40 秒默认超时时间长很多)。 kubelet
会创建并每 10 秒(默认更新间隔时间)更新 Lease 对象。 Lease 的更新独立于 Node 的.status
更新而发生。 如果 Lease 的更新操作失败,kubelet 会采用指数回退机制,从 200 毫秒开始重试, 最长重试间隔为 7 秒钟。
更多推荐
所有评论(0)