一、采样

1. 低通采样定理

原始信号:m(t),低频带限信号,频谱为M(w)w\leq w_H

采样脉冲:\delta_{T_s} (t) = \sum_{n=-\infty}^{\infty} \delta(t-nT_s),频谱为\delta_{T_s}(w) = \frac{2\pi}{T_s} \sum_{n=-\infty}^{\infty} \delta(w-nw_s)

采样信号:m_s(t) = m(t) \delta_{T_s}(t) = \sum_{n=-\infty}^{\infty} m(nT_s) \delta(t - nT_s)

采样信号频谱:

M_s(w) = \frac{1}{2\pi} M(w) \otimes \delta_{T_s}(w) \\= \frac{1}{2\pi} M(w) \otimes \frac{2\pi}{T_s} \sum_{n = -\infty}^{\infty} \delta(w-nw_s) \\= \frac{1}{T_s} \sum_{n=-\infty}^{\infty} M(w-nw_s)

w_s \geq 2w_H时,可利用理想低通滤波器从采样信号频谱中提取原始信号频谱,从而重建原始信号。

w_s < 2w_H时,采样信号频谱中周期延拓的原信号频谱发生混叠,无法利用滤波器从采样信号频谱中提取原始信号频谱。

重建原始信号

理想低通滤波器:H(w) = \left\{\begin{matrix} 1 & |w| \leq w_H \\ 0 & {\rm others} \end{matrix}\right.

低通滤波后的信号:M_r(w) = M_s(w)H(w) = \frac{M(w)}{T_s}

m_r(t) = \frac{ m(t) }{T_s}

m_r(t) = m_s(t) \otimes h(t) = \sum_{n=-\infty}^{\infty} m(nT_s) \delta(t - nT_s) \otimes \frac{w_H}{\pi} Sa(w_H t) \\= \sum_{n=-\infty}^{\infty} m(nT_s) \delta(t - nT_s) \otimes \frac{w_H}{\pi} \frac{\sin(w_H t)}{w_H t} \\= \frac{w_H}{\pi} \sum_{n=-\infty}^{\infty} m(nT_s) \frac{\sin(w_H (t - nT_s))}{w_H (t - nT_s)}

2. 带通采样定理

 带通采样无失真的必要条件之一:f_s \geq 2B

2f_H = mf_s

f_s = \frac{2f_H}{m} \geq 2B

m \leq \frac{f_H}{B}

 如果f_H = nB+kB0<k<1,则

f_s = \frac{2f_H}{m} = \frac{2f_H}{\left \lfloor f_H /B \right \rfloor} = \frac{2nB+2kB}{n} = 2B\left[ 1+\frac{k}{n} \right]

3. 实际采样

(1)自然采样

G_a(t) = \left\{\begin{matrix} 1 & |t| < a \\ 0 & others \end{matrix}\right.

自然采样抽样脉冲:p(t) = \sum_{n=-\infty}^{\infty} G_a(t-nT_s) = G_a(t) \otimes \sum_{n=-\infty}^{\infty} \delta(t-nT_s) 

m_s(t) = m(t) p(t) = m(t) \sum_{n=-\infty}^{\infty} G_a(t-nT_s) = m(t) \cdot \left[ G_a(t) \otimes \sum_{n=-\infty}^{\infty} \delta(t-nT_s) \right]

M_s(w) = \frac{1}{2\pi} M(w) \otimes \left[ 2aSa(wa) \cdot \frac{2\pi}{T_s} \sum_{n=-\infty}^{\infty} \delta(w-nw_s) \right ] \\= \frac{2a}{T_s} M(w) \otimes \sum_{n=-\infty}^{\infty} Sa(nw_s a) \delta(w-nw_s) \\= \frac{2a}{T_s} \sum_{n=-\infty}^{\infty} Sa(nw_s a) M(w-nw_s)

(2)平定采样 

 m_s(t) = \left[ m(t) \delta_{T_s}(t) \right ] \otimes G_a(t)

M_s(w) = \left[ \frac{1}{2\pi} M(w) \otimes \frac{2\pi}{T_s} \sum_{n=-\infty}^{\infty} \delta(w-nw_s) \right] 2a Sa(wa) \\= \frac{2a}{T_s} Sa(wa) \sum_{n=-\infty}^{\infty} M(w-nw_s) \\= \frac{2a}{T_s} \sum_{n=-\infty}^{\infty} Sa(wa) M(w-nw_s)

 二、量化

1. 量化的基本概念

 量化误差q = x- y = x-Q(x)

输入信号x为随机分布,因此量化误差q也是一个随机变量。

量化误差的大小:均方误差/平均功率

\sigma_q^2 = E\left[ q^2 \right ] = E\left[ (x-Q(x))^2 \right ] \\ = \int_{-\infty}^{+\infty} \left[ x-Q(x) \right]^2 p(x) dx \\ = \sum_{k=1}^{L} \int_{x_k}^{x_{k+1}} (x-y_k)^2 p(x) dx

量化信噪比SNR = \frac{S}{\sigma_q^2}

量化信噪比的定义对于所有量化器均适用,量化信噪比越大,表示量化器性能越好。

 2. 均匀量化

把输入信号的取值域按等间隔分割的量化称为均匀量化。其中,每个量化区间的量化电平的取值在各区间的中点。

设量化范围为[-V,V],量化电平数L,量化间隔\Delta V = \frac{2V}{L}

分层电平:

x_k = -V + (k-1)\Delta Vk = 1,2,\cdots ,L+1

量化电平:

y_k = x_k + \frac{\Delta V}{2} = -V + (k-1) \Delta V + \frac{\Delta V}{2} = -V + (k-0.5) \Delta Vk = 1,2,\dots,L

 设输入信号x分布于[-V,V],概率分布为p(x),无过载。

L \gg 1,则p(x) \approx p(y_k)

\sigma_q^2 = E\left[ q^2 \right ] = E\left[ (x-Q(x))^2 \right ] \\ = \int_{-V}^{V} \left[ x-Q(x) \right]^2 p(x) dx \\ = \sum_{k=1}^{L} \int_{x_k}^{x_{k+1}} (x-y_k)^2 p(x) dx \\ \approx \sum_{k=1}^{L} p(y_k) \int_{x_k}^{x_{k+1}} (x-y_k)^2 dx \\= \sum_{k=1}^{L} p(y_k) \int_{-\frac{\Delta V}{2}} ^{\frac{\Delta V}{2}} v^2 dv \\= \sum_{k=1}^{L} p(y_k) \left[ \frac{v^3}{3} \right ]_{-\frac{\Delta V}{2}} ^{\frac{\Delta V}{2}} \\= \sum_{k=1}^{L} p(y_k) \frac{\Delta V ^3}{12} \\= \sum_{k=1}^{L} P_k \frac{\Delta V ^2}{12} = \frac{\Delta V^2}{12} = \frac{V^2}{3L^2}

设量化器输入信号为正弦信号s(t) = A_m cos(wt + \phi)A_m \leq V

SNR = \frac{S}{\sigma_q^2} = \frac{\frac{A_m^2}{2}}{\frac{V^2}{3L^2}} = \frac{3A_m^2 L^2}{2V^2} = 3D^2L^2

其中,D = \frac{A_m / \sqrt{2}}{V}

取量化电平数为L = 2^n
 

SNR = 3D^2 2^{2n}

3. 非均匀量化

在信号取值小的区间,量化间隔小;在信号取值大的区间,量化间隔大。

 当L \gg 1时,p(x) = p(y_k)

\sigma_q^2 = E\left[ q^2 \right ] = E\left[ (x-Q(x))^2 \right ] \\ = \int_{-V}^{V} \left[ x-Q(x) \right]^2 p(x) dx \\ = \sum_{k=1}^{L} \int_{x_k}^{x_{k+1}} (x-y_k)^2 p(x) dx \\ \approx \sum_{k=1}^{L} p(y_k) \int_{x_k}^{x_{k+1}} (x-y_k)^2 dx \\ = \sum_{k = 1} ^{L} p(y_k) \int_{-\frac{\Delta_k}{2}}^{\frac{\Delta_k}{2}} v^2 d v \\= \sum_{k = 1} ^{L} p(y_k) \frac{\Delta_k^3}{12} \\= \frac{1}{12} \sum_{k=1}^{L} P_k\Delta_k^2 \\= \frac{1}{12} \sum_{k=1}^{L} \int_{x_k}^{x_{k+1} } \Delta_k^2 p(x) dx \\= \frac{1}{12} \int_{-V}^{V} [\Delta_k(x)]^2 p(x) dx

\Delta_z = \frac{2V}{L}

\frac{\Delta_z}{\Delta_k} = \frac{dz}{dx} = f^{'}(x)

\sigma_q^2 = \frac{1}{12} \int_{-V}^{V} \Delta_k^2 p(x) dx \\= \frac{1}{12} \int_{-V}^{V} \frac{\Delta_z^2}{ [f^{'}(x)]^2} p(x) dx \\= \frac{\Delta_z^2}{12} \int_{-V}^{V} \frac{p(x)}{[f^{'}(x)]^2} dx

对数量化器压缩特性:f(x) = \frac{1}{B} \ln(x)

\sigma_q^2 = \frac{\Delta_z^2}{12} \int_{-V}^{V} \frac{p(x)}{[f^{'}(x)]^2} dx \\= \frac{\Delta_z^2}{12} \int_{-V}^{V} B^2 x^2 p(x) dx\\= \frac{B^2 \Delta_z^2}{12} \int_{-V}^{V} x^2 p(x) dx \\= \frac{B^2 \Delta_z^2}{12} S

量化信噪比:

SNR = \frac{S}{\sigma_q^2} = \frac{12}{B^2 \Delta_z^2} = \frac{3L^2}{B^2V^2}

对数量化信噪比是常数,与x的分布无关,是一种最平稳的状态。

三、编码

1. PCM编码与译码

 

+1260\Delta?

极性码:1

段落码:1260>1024,所以段落码为111

段内码:\left \lfloor \frac{1260-1024}{64} \right \rfloor = 3,所以段内码为0011

所以+1260\Delta?的PCM编码为11110011

11110011?

极性码为1,符号为+

段落码为111,段内码为0011,所以译码电平为:

+\left[ 1024 + (3+0.5) \times 64 \right ] \Delta = +1248 \Delta

 \Delta = \frac{5}{2048} V

-1.6875 =-691\Delta

极性码:0

段落码:110

段内码:\left \lfloor \frac{691-512}{32} \right \rfloor = 5 = 0101

编码器输出码组:01100101

译码电平:-\left[ 512 + (5+0.5) \times 32 \right ] \Delta = -688\Delta = -1.6796875

量化误差:0.0078125

2. PCM系统的比特速率

采样率为f_s,用N比特表示一个采样值,则比特速率为R_b = f_s N,单位bit/s

实际PCM系统中一般取f_s = 8kHz,比特速率为R_b = f_s N = 8kHz \times 8bit = 64kb /s = 64kbps

Logo

助力广东及东莞地区开发者,代码托管、在线学习与竞赛、技术交流与分享、资源共享、职业发展,成为松山湖开发者首选的工作与学习平台

更多推荐