2021SC@SDUSC

源代码下载地址:HyperLPR: HyperLRP是一个开源的、基于深度学习高性能中文车牌识别库,由北京智云视图科技有限公司开发,支持PHP、C/C++、Python语言,Windows/Mac/Linux/Android/IOS 平台。icon-default.png?t=LA92https://gitee.com/zeusees/HyperLPR

源码配置的详情见第一篇分析

这一次分析以下代码:

        image_rgb = fv.finemappingVertical(image_rgb)
        cache.verticalMappingToFolder(image_rgb)
        print("e2e:", e2e.recognizeOne(image_rgb))
        image_gray = cv2.cvtColor(image_rgb,cv2.COLOR_RGB2GRAY)

首先是    image_rgb = fv.finemappingVertical(image_rgb)

def finemappingVertical(image):
    resized = cv2.resize(image,(66,16))
    resized = resized.astype(np.float)/255
    res= model.predict(np.array([resized]))[0]
    print("keras_predict",res)
    res  =res*image.shape[1]
    res = res.astype(np.int)
    H,T = res
    H-=3
    #3 79.86
    #4 79.3
    #5 79.5
    #6 78.3


    #T
    #T+1 80.9
    #T+2 81.75
    #T+3 81.75
    if H<0:
        H=0
    T+=2;

    if T>= image.shape[1]-1:
        T= image.shape[1]-1

    image = image[0:35,H:T+2]

    image = cv2.resize(image, (int(136), int(36)))
    return image

它使用的是这个方法,

输入参数:
裁剪的车牌区域图像(Mat类型),rect也是裁剪的车牌部分的图像(Mat类型)

实现处理:
1.将原来车牌图像resize大小:66*16*3
2.将原来灰度图颜色通道[0, 255]转化为float类型[0,1]
3.将输入66*16(float),输入进模型进行测试self.modelFineMapping.predict

然后是  cache.verticalMappingToFolder(image_rgb)

import cv2
import os
import hashlib

def verticalMappingToFolder(image):
    name = hashlib.md5(image.data).hexdigest()[:8]
    print(name)

    cv2.imwrite("./cache/finemapping/"+name+".png",image)

就是将处理之后的图片进行加密储存。

后两个都是之前的文章已经提到过了,就不再再次说了,详情可以看之前的文章。

Logo

更多推荐