1. rebalance tasks在es集群里面的表现形式:
    通过调用 GET _cat/tasks?v API
    返回结果中 action 为 internal:index/shard/recovery/start_recovery(不仅仅是rebalance)
  2. 判断shards移动状况:
    通过调用 GET _cat/recovery?v API
    返回结果中 type 为 peer;source_node 和 target_node 可以看出分片移动的方向;stage可以看出移动进行到哪一步: INIT->…->DONE
  3. 查看分片状态
    通过调用 GET _cat/shards?v API
    返回结果中 可以看到移动的分片state为RELOCATING状态
  4. 查看每个节点分片数
    使用kibana的monitor观测或者通过:GET _nodes/stats/indices?level=shards 统计每个node的shards数组长度(感觉_cat/nodes API有必要添加shards数的监控)

Rebalance相关配置参数有以下3+3个:

cluster.routing.rebalance.enable//谁可以进行rebalance
cluster.routing.allocation.allow_rebalance//什么时候可以rebalance
cluster.routing.allocation.cluster_concurrent_rebalance//rebalance的并行度(shards级别)

cluster.routing.allocation.balance.shard//allocate每个node上shard总数时计算的权重,提高这个值以后会使node上的shard总数基本趋于一致
cluster.routing.allocation.balance.index//allocate每个index在一个node上shard数时计算的权重,提高这个值会使单个index的shard在集群节点中均衡分布
cluster.routing.allocation.balance.threshold//阈值,提高这个值可以提高集群rebalance的惰性

具体分析见下文…

源码解析

抽象基类:AllocationDecider提供两个判断是否需要rebalane的方法

public abstract class AllocationDecider {
    //判断是否可以进行shard routing
    public Decision canRebalance(ShardRouting shardRouting, RoutingAllocation allocation) {
        return Decision.ALWAYS;
    }
    //判断集群是否可以进行rebalance操作(主要研究)
    public Decision canRebalance(RoutingAllocation allocation) {
        return Decision.ALWAYS;
    }
}

AllocationDeciders类继承了基类,用于汇总一组决策者的决定来确定最终决定。

public Decision canRebalance(RoutingAllocation allocation) {
    Decision.Multi ret = new Decision.Multi();
    for (AllocationDecider allocationDecider : allocations) {
        Decision decision = allocationDecider.canRebalance(allocation);
        // short track if a NO is returned.
        if (decision == Decision.NO) {
            if (!allocation.debugDecision()) {
                return decision;
            } else {
                ret.add(decision);
            }
        } else {
            addDecision(ret, decision, allocation);
        }
    }
    return ret;
}

其中判断集群是否可以进行rebalance的决策者们如下:

  • EnableAllocationDecider
    针对index.routing.rebalance.enable参数
  • ClusterRebalanceAllocationDecider
    针对cluster.routing.allocation.allow_rebalance参数
  • ConcurrentRebalanceAllocationDecider
    针对cluster.routing.allocation.cluster_concurrent_rebalance参数

具体的rebalance过程是由BalancedShardsAllocator类中allocate()方法中:调用Balancer的 balanceByWeights() 方法执行。
BalancedShardsAllocator初始化时会根据上文三个参数设置weightFunction(上文参数4,5)和Threshold(上文参数6)。

public BalancedShardsAllocator(Settings settings, ClusterSettings clusterSettings) {
    setWeightFunction(INDEX_BALANCE_FACTOR_SETTING.get(settings), SHARD_BALANCE_FACTOR_SETTING.get(settings));
    setThreshold(THRESHOLD_SETTING.get(settings));
    clusterSettings.addSettingsUpdateConsumer(INDEX_BALANCE_FACTOR_SETTING, SHARD_BALANCE_FACTOR_SETTING, this::setWeightFunction);
    clusterSettings.addSettingsUpdateConsumer(THRESHOLD_SETTING, this::setThreshold);
}

private void setWeightFunction(float indexBalance, float shardBalanceFactor) {
    weightFunction = new WeightFunction(indexBalance, shardBalanceFactor);
}

private void setThreshold(float threshold) {
    this.threshold = threshold;
}

WeightFunction权重函数用于均衡计算节点间shards数量平衡节点间每个索引shards数平衡,看注释:

private static class WeightFunction {

    private final float indexBalance;
    private final float shardBalance;
    private final float theta0;
    private final float theta1;
    //默认 0.45 和 0.55 相加等于一
    WeightFunction(float indexBalance, float shardBalance) {
        float sum = indexBalance + shardBalance;
        if (sum <= 0.0f) {
            throw new IllegalArgumentException("Balance factors must sum to a value > 0 but was: " + sum);
        }
        //相加等于一则权重保持参数配置
        theta0 = shardBalance / sum;
        theta1 = indexBalance / sum;
        this.indexBalance = indexBalance;
        this.shardBalance = shardBalance;
    }
    //获取权重计算结果,方式为通过Balancer策略和当前节点和当前索引计算
    float weight(Balancer balancer, ModelNode node, String index) {
        //当前节点的shards数减去平均的shards数
        final float weightShard = node.numShards() - balancer.avgShardsPerNode();
        //当前节点当前索引shards数减去平均的shards数
        final float weightIndex = node.numShards(index) - balancer.avgShardsPerNode(index);
        //乘以系数得出结果
        return theta0 * weightShard + theta1 * weightIndex;
    }
}

再说Balancer:它的具体三个工作如下所示(本文主要想研究balance):

public void allocate(RoutingAllocation allocation) {
    if (allocation.routingNodes().size() == 0) {
        failAllocationOfNewPrimaries(allocation);
        return;
    }
    final Balancer balancer = new Balancer(logger, allocation, weightFunction, threshold);
    //分配未分配的shards
    balancer.allocateUnassigned();
    //重分配需要迁移的shards(一些分配规则的限制)
    balancer.moveShards();
    //尽量平衡分片在节点的数量
    balancer.balance();//最终调用balanceByWeights()
}

接下来看balance():

  • 首先你想看balance过程得开启日log的trace
  • issue 14387,集群OK且shards OK才rebalance,否则可能做无用功
  • 调用上文提到的canRebalance()判断是否可以进行
  • 节点只有一个没必要进行
  • 开始进行rebalance
private void balance() {
    if (logger.isTraceEnabled()) {
        logger.trace("Start balancing cluster");
    }
    if (allocation.hasPendingAsyncFetch()) {
        /*
         * see https://github.com/elastic/elasticsearch/issues/14387
         * if we allow rebalance operations while we are still fetching shard store data
         * we might end up with unnecessary rebalance operations which can be super confusion/frustrating
         * since once the fetches come back we might just move all the shards back again.
         * Therefore we only do a rebalance if we have fetched all information.
         */
        logger.debug("skipping rebalance due to in-flight shard/store fetches");
        return;
    }
    if (allocation.deciders().canRebalance(allocation).type() != Type.YES) {
        logger.trace("skipping rebalance as it is disabled");
        return;
    }
    if (nodes.size() < 2) { /* skip if we only have one node */
        logger.trace("skipping rebalance as single node only");
        return;
    }
    balanceByWeights();//核心方法
}

接下来看balanceByWeights():核心代码在此 内容比较多,添加了详细的中文注释,一定要捋一遍…

private void balanceByWeights() {
    //判断是否要rebanlance的决策者
    final AllocationDeciders deciders = allocation.deciders();
    //节点信息:包括节点shards数和节点内每个index的shards数
    final ModelNode[] modelNodes = sorter.modelNodes;
    //节点内每个索引的权重信息
    final float[] weights = sorter.weights;
    //处理每个索引
    for (String index : buildWeightOrderedIndices()) {
        IndexMetadata indexMetadata = metadata.index(index);
        // find nodes that have a shard of this index or where shards of this index are allowed to be allocated to,
        // move these nodes to the front of modelNodes so that we can only balance based on these nodes
        //找到含有索引shards或者索引shards可以移动过去的节点,并将其移动到ModelNode数组靠前的位置
        int relevantNodes = 0;
        for (int i = 0; i < modelNodes.length; i++) {
            ModelNode modelNode = modelNodes[i];
            if (modelNode.getIndex(index) != null
                || deciders.canAllocate(indexMetadata, modelNode.getRoutingNode(), allocation).type() != Type.NO) {
                // swap nodes at position i and relevantNodes
                modelNodes[i] = modelNodes[relevantNodes];
                modelNodes[relevantNodes] = modelNode;
                relevantNodes++;
            }
        }
        //没有或者只有一个相关节点则跳过
        if (relevantNodes < 2) {
            continue;
        }
        //对相关节点重新计算权重并排序
        sorter.reset(index, 0, relevantNodes);
        //准备对相关节点即前relevantNodes个节点下手
        int lowIdx = 0;
        int highIdx = relevantNodes - 1;
        while (true) {
            final ModelNode minNode = modelNodes[lowIdx];
            final ModelNode maxNode = modelNodes[highIdx];
            advance_range:
            if (maxNode.numShards(index) > 0) {
                //计算相关节点的最大权重差值,如果低于参数3配置的值则跳过
                final float delta = absDelta(weights[lowIdx], weights[highIdx]);
                if (lessThan(delta, threshold)) {
                    if (lowIdx > 0 && highIdx-1 > 0 && (absDelta(weights[0], weights[highIdx-1]) > threshold) ) {
                        break advance_range;
                    }
                    if (logger.isTraceEnabled()) {
                        logger.trace("Stop balancing index [{}]  min_node [{}] weight: [{}]" +
                                "  max_node [{}] weight: [{}]  delta: [{}]",
                                index, maxNode.getNodeId(), weights[highIdx], minNode.getNodeId(), weights[lowIdx], delta);
                    }
                    break;
                }
                if (logger.isTraceEnabled()) {
                    logger.trace("Balancing from node [{}] weight: [{}] to node [{}] weight: [{}]  delta: [{}]",
                            maxNode.getNodeId(), weights[highIdx], minNode.getNodeId(), weights[lowIdx], delta);
                }
                //权重差值小于默认值1则跳过?应该写配置参数而不是写死1吧?
                if (delta <= 1.0f) {
                    logger.trace("Couldn't find shard to relocate from node [{}] to node [{}]",
                        maxNode.getNodeId(), minNode.getNodeId());
                    //进行分片们移动,在两个节点间进行全部可能的ShardRouting。
                } else if (tryRelocateShard(minNode, maxNode, index)) {
                    //移动完成后由于节点shards数发生编发,会重新计算他们的权重并重新排序,开启下一轮计算
                    weights[lowIdx] = sorter.weight(modelNodes[lowIdx]);
                    weights[highIdx] = sorter.weight(modelNodes[highIdx]);
                    sorter.sort(0, relevantNodes);
                    lowIdx = 0;
                    highIdx = relevantNodes - 1;
                    continue;
                }
            }
            //如果本轮没有移动情况,节点权重没有发生改变,则继续处理其他的相关节点
            if (lowIdx < highIdx - 1) {
                lowIdx++;
            } else if (lowIdx > 0) {
                lowIdx = 0;
                highIdx--;
            } else {
                //当前索引已经平衡
                break;
            }
        }
    }
}

接下来看tryRelocateShard()方法,在两个节点进行分片们的平衡:
//TODO

Logo

CSDN联合极客时间,共同打造面向开发者的精品内容学习社区,助力成长!

更多推荐