springcloud-gateway限流
小伙伴们,你们好呀!我是老寇!一起学习学习gateway限流。
小伙伴们,你们好呀!我是老寇!一起学习学习gateway限流
一、常见限流算法
1.漏桶算法(不推荐)
1.原理:将请求缓存到一个队列中,然后以固定的速度处理,从而达到限流的目的
2.实现:将请求装到一个桶中,桶的容量为固定的一个值,当桶装满之后,就会将请求丢弃掉,桶底部有一个洞,以固定的速率流出。
3.举例:桶的容量为1W,有10W并发请求,最多只能将1W请求放入桶中,其余请求全部丢弃,以固定的速度处理请求
4.缺点:处理突发流量效率低(处理请求的速度不变,效率很低)
2.令牌桶算法(推荐)
1.原理:将请求放在一个缓冲队列中,拿到令牌后才能进行处理
2.实现:装令牌的桶大小固定,当令牌装满后,则不能将令牌放入其中;每次请求都会到桶中拿取一个令牌才能放行,没有令牌时即丢弃请求/继续放入缓存队列中等待
3.举例:桶的容量为10w个,生产1w个/s,有10W的并发请求,以每秒10W个/s速度处理,随着桶中的令牌很快用完,速度又慢慢降下来啦,而生产令牌的速度趋于一致1w个/s
4.缺点:处理突发流量提供了系统性能,但是对系统造成了一定的压力,桶的大小不合理,甚至会压垮系统(处理1亿的并发请求,将桶的大小设置为1,这个系统一下就凉凉啦)
二、网关限流(springcloud gateway + redis实战)
1.pom.xml配置
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis-reactive</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-gateway</artifactId>
<exclusions>
<exclusion>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</exclusion>
</exclusions>
</dependency>
<dependency>
<groupId>org.apache.httpcomponents</groupId>
<artifactId>httpclient</artifactId>
</dependency>
2.yaml配置
spring:
application:
name: laokou-gateway
cloud:
gateway:
routes:
- id: LAOKOU-SSO-DEMO
uri: lb://laokou-sso-demo
predicates:
- Path=/sso/**
filters:
- StripPrefix=1
- name: RequestRateLimiter #请求数限流,名字不能乱打
args:
key-resolver: "#{@ipKeyResolver}"
redis-rate-limiter.replenishRate: 1 #生成令牌速率-设为1方便测试
redis-rate-limiter.burstCapacity: 1 #令牌桶容量-设置1方便测试
redis:
database: 0
cluster:
nodes: x.x.x.x:7003,x.x.x.x:7004,x.x.x.x:7005,x.x.x.x:7003,x.x.x.x:7004,x.x.x.x:7005
password: laokou #密码
timeout: 6000ms #连接超时时长(毫秒)
jedis:
pool:
max-active: -1 #连接池最大连接数(使用负值表示无极限)
max-wait: -1ms #连接池最大阻塞等待时间(使用负值表示没有限制)
max-idle: 10 #连接池最大空闲连接
min-idle: 5 #连接池最小空间连接
3.创建bean
@Bean(value = "ipKeyResolver")
KeyResolver ipKeyResolver() {
return exchange -> {
String ip = exchange.getRequest().getRemoteAddress().getAddress().getHostAddress();
log.info("ip:{}",ip);
return Mono.just(ip);
};
}
三、测试限流(编写java并发测试)
@Slf4j
public class HttpUtil {
public static void apiConcurrent(String url,Map<String,String> params) {
Integer count = 200;
//创建线程池
ThreadPoolExecutor pool = new ThreadPoolExecutor(5, 200, 0L, TimeUnit.SECONDS, new SynchronousQueue<>());
//同步工具
CountDownLatch latch = new CountDownLatch(count);
Map<String,String> dataMap = new HashMap<>(1);
dataMap.put("authorize","XXXXXXX");
for (int i = 0; i < count; i++) {
pool.execute(() -> {
try {
//访问网关的API接口
HttpUtil.doGet("http://localhost:1234/sso/laokou-demo/user",dataMap);
} catch (IOException e) {
e.printStackTrace();
}finally {
latch.countDown();
}
});
}
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
}
public static String doGet(String url, Map<String, String> params) throws IOException {
//创建HttpClient对象
CloseableHttpClient httpClient = HttpClients.createDefault();
String resultString = "";
CloseableHttpResponse response = null;
try {
//创建uri
URIBuilder builder = new URIBuilder(url);
if (!params.isEmpty()) {
for (Map.Entry<String, String> entry : params.entrySet()) {
builder.addParameter(entry.getKey(), entry.getValue());
}
}
URI uri = builder.build();
//创建http GET请求
HttpGet httpGet = new HttpGet(uri);
List<NameValuePair> paramList = new ArrayList<>();
RequestBuilder requestBuilder = RequestBuilder.get().setUri(new URI(url));
requestBuilder.setEntity(new UrlEncodedFormEntity(paramList, Consts.UTF_8));
httpGet.setHeader(new BasicHeader("Content-Type", "application/json;charset=UTF-8"));
httpGet.setHeader(new BasicHeader("Accept", "*/*;charset=utf-8"));
//执行请求
response = httpClient.execute(httpGet);
//判断返回状态是否是200
if (response.getStatusLine().getStatusCode() == 200) {
resultString = EntityUtils.toString(response.getEntity(), "UTF-8");
}
} catch (Exception e) {
log.info("调用失败:{}",e);
} finally {
if (response != null) {
response.close();
}
httpClient.close();
}
log.info("打印:{}",resultString);
return resultString;
}
}
说明这个网关限流配置是没有问题的
四、源码查看
1.查看 RequestRateLimiterGatewayFilterFactory
@Override
public GatewayFilter apply(Config config) {
KeyResolver resolver = getOrDefault(config.keyResolver, defaultKeyResolver);
RateLimiter<Object> limiter = getOrDefault(config.rateLimiter, defaultRateLimiter);
boolean denyEmpty = getOrDefault(config.denyEmptyKey, this.denyEmptyKey);
HttpStatusHolder emptyKeyStatus = HttpStatusHolder
.parse(getOrDefault(config.emptyKeyStatus, this.emptyKeyStatusCode));
return (exchange, chain) -> resolver.resolve(exchange).defaultIfEmpty(EMPTY_KEY).flatMap(key -> {
if (EMPTY_KEY.equals(key)) {
if (denyEmpty) {
setResponseStatus(exchange, emptyKeyStatus);
return exchange.getResponse().setComplete();
}
return chain.filter(exchange);
}
String routeId = config.getRouteId();
if (routeId == null) {
Route route = exchange.getAttribute(ServerWebExchangeUtils.GATEWAY_ROUTE_ATTR);
routeId = route.getId();
}
// 执行限流
return limiter.isAllowed(routeId, key).flatMap(response -> {
for (Map.Entry<String, String> header : response.getHeaders().entrySet()) {
exchange.getResponse().getHeaders().add(header.getKey(), header.getValue());
}
if (response.isAllowed()) {
return chain.filter(exchange);
}
setResponseStatus(exchange, config.getStatusCode());
return exchange.getResponse().setComplete();
});
});
}
2.查看 RedisRateLimiter
@Override
@SuppressWarnings("unchecked")
public Mono<Response> isAllowed(String routeId, String id) {
if (!this.initialized.get()) {
throw new IllegalStateException("RedisRateLimiter is not initialized");
}
Config routeConfig = loadConfiguration(routeId);
// 令牌桶每秒产生令牌数量
int replenishRate = routeConfig.getReplenishRate();
// 令牌桶容量
int burstCapacity = routeConfig.getBurstCapacity();
// 请求消耗的令牌数
int requestedTokens = routeConfig.getRequestedTokens();
try {
// 键
List<String> keys = getKeys(id);
// 参数
List<String> scriptArgs = Arrays.asList(replenishRate + "", burstCapacity + "", "", requestedTokens + "");
// 调用lua脚本
Flux<List<Long>> flux = this.redisTemplate.execute(this.script, keys, scriptArgs);
return flux.onErrorResume(throwable -> {
if (log.isDebugEnabled()) {
log.debug("Error calling rate limiter lua", throwable);
}
return Flux.just(Arrays.asList(1L, -1L));
}).reduce(new ArrayList<Long>(), (longs, l) -> {
longs.addAll(l);
return longs;
}).map(results -> {
// 判断是否等于1,1表示允许通过,0表示不允许通过
boolean allowed = results.get(0) == 1L;
Long tokensLeft = results.get(1);
Response response = new Response(allowed, getHeaders(routeConfig, tokensLeft));
if (log.isDebugEnabled()) {
log.debug("response: " + response);
}
return response;
});
}
catch (Exception e) {
log.error("Error determining if user allowed from redis", e);
}
return Mono.just(new Response(true, getHeaders(routeConfig, -1L)));
}
static List<String> getKeys(String id) {
String prefix = "request_rate_limiter.{" + id;
String tokenKey = prefix + "}.tokens";
String timestampKey = prefix + "}.timestamp";
return Arrays.asList(tokenKey, timestampKey);
}
3.重点来了,令牌桶 /META-INF/scripts/request_rate_limiter.lua 脚本刨析
-- User Request Rate Limiter filter
-- See https://stripe.com/blog/rate-limiters
-- See https://gist.github.com/ptarjan/e38f45f2dfe601419ca3af937fff574d#file-1-check_request_rate_limiter-rb-L11-L34
-- 令牌桶算法工作原理
-- 1.系统以恒定速率往桶里面放入令牌
-- 2.请求需要被处理,则需要从桶里面获取一个令牌
-- 3.如果桶里面没有令牌可获取,则可以选择等待或直接拒绝并返回
-- 令牌桶算法工作流程
-- 1.计算填满令牌桶所需要的时间(填充时间 = 桶容量 / 速率)
-- 2.设置存储数据的TTL(过期时间),为填充时间的两倍(存储时间 = 填充时间 * 2)
-- 3.从Redis获取当前令牌的剩余数量和上一次调用的时间戳
-- 4.计算距离上一次调用的时间间隔(时间间隔 = 当前时间 - 上一次调用时间)
-- 5.计算填充的令牌数量(填充令牌数量 = 时间间隔 * 速率)【前提:桶容量是固定的,不存在无限制的填充】
-- 6.判断是否有足够多的令牌满足请求【 (填充令牌数量 + 剩余令牌数量) >= 请求数量 && (填充令牌数量 + 剩余令牌数量) <= 桶容量 】
-- 7.如果请求被允许,则从桶里面取出相应数据的令牌
-- 8.如果TTL为正,则更新Redis键中的令牌和时间戳
-- 9.返回两个两个参数(allowed_num:请求被允许标志。1允许,0不允许)、(new_tokens:填充令牌后剩余的令牌数据)
-- 随机写入
redis.replicate_commands()
-- 令牌桶Key -> 存储当前可用令牌的数量(剩余令牌数量)
local tokens_key = KEYS[1]
-- 时间戳Key -> 存储上次令牌刷新的时间戳
local timestamp_key = KEYS[2]
-- 令牌填充速率
local rate = tonumber(ARGV[1])
-- 令牌桶容量
local capacity = tonumber(ARGV[2])
-- 当前时间
local now = tonumber(ARGV[3])
-- 请求数量
local requested = tonumber(ARGV[4])
-- 填满令牌桶所需要的时间
local fill_time = capacity / rate
-- 设置key的过期时间(填满令牌桶所需时间的2倍)
local ttl = math.floor(fill_time * 2)
-- 判断当前时间,为空则从redis获取
if now == nil then
now = redis.call('TIME')[1]
end
-- 获取当前令牌的剩余数量
local last_tokens = tonumber(redis.call("get", tokens_key))
if last_tokens == nil then
last_tokens = capacity
end
-- 获取上一次调用的时间戳
local last_refreshed = tonumber(redis.call('get', timestamp_key))
if last_refreshed == nil then
last_refreshed = 0
end
-- 计算距离上一次调用的时间间隔
local delta = math.max(0, now - last_refreshed)
-- 当前的令牌数量(剩余 + 填充 <= 桶容量)
local now_tokens = math.min(capacity, last_refreshed + (rate * delta))
-- 判断是否有足够多的令牌满足请求
local allowed = now_tokens >= requested
-- 定义当前令牌的剩余数量
local new_tokens = now_tokens
-- 定义被允许标志
local allowed_num = 0
if allowed then
new_tokens = now_tokens - requested
-- 允许访问
allowed_num = 1
end
-- ttl > 0,将当前令牌的剩余数量和当前时间戳存入redis
if ttl > 0 then
redis.call('setex', tokens_key, ttl, new_tokens)
redis.call('setex', timestamp_key, ttl, now)
end
-- 返回参数
return { allowed_num, new_tokens }
4.查看 GatewayRedisAutoConfiguration 脚本初始化
@Bean
@SuppressWarnings("unchecked")
public RedisScript redisRequestRateLimiterScript() {
DefaultRedisScript redisScript = new DefaultRedisScript<>();
redisScript.setScriptSource(
// 根据指定路径获取lua脚本来初始化配置
new ResourceScriptSource(new ClassPathResource("META-INF/scripts/request_rate_limiter.lua")));
redisScript.setResultType(List.class);
return redisScript;
}
@Bean
@ConditionalOnMissingBean
public RedisRateLimiter redisRateLimiter(ReactiveStringRedisTemplate redisTemplate,
@Qualifier(RedisRateLimiter.REDIS_SCRIPT_NAME) RedisScript<List<Long>> redisScript,
ConfigurationService configurationService) {
return new RedisRateLimiter(redisTemplate, redisScript, configurationService);
}
我是老寇,我们后会有期
更多推荐
所有评论(0)