
python计算两个图像的互信息
我们常用互信息来衡量两个图像的相似程度。互信息的计算方式如下:使用python中的numpy包或者sklearn可以很方便的计算互信息,计算代码如下:import cv2import numpy as npimport sklearn.metrics as skmdef hxx_forward(x, y):return skm.mutual_info_score(x, y)def hxx(x, y
·
我们常用互信息来衡量两个图像的相似程度。互信息的计算方式如下:
使用python中的numpy包或者sklearn可以很方便的计算互信息,计算代码如下:
import cv2
import numpy as np
import sklearn.metrics as skm
def hxx_forward(x, y):
return skm.mutual_info_score(x, y)
def hxx(x, y):
size = x.shape[-1]
px = np.histogram(x, 256, (0, 255))[0] / size
py = np.histogram(y, 256, (0, 255))[0] / size
hx = - np.sum(px * np.log(px + 1e-8))
hy = - np.sum(py * np.log(py + 1e-8))
hxy = np.histogram2d(x, y, 256, [[0, 255], [0, 255]])[0]
hxy /= (1.0 * size)
hxy = - np.sum(hxy * np.log(hxy + 1e-8))
r = hx + hy - hxy
return r
img1 = cv2.imread("F:/BYSY/ACCESS/ImageMatch/1.png", cv2.IMREAD_GRAYSCALE)
img2 = cv2.imread("F:/BYSY/ACCESS/ImageMatch/1.png", cv2.IMREAD_GRAYSCALE)
x = np.reshape(img1, -1)
y = np.reshape(img2, -1)
print(hxx_forward(x, y))
print(hxx(x, y))
经验证,两种方法计算结果相同
点击阅读全文
更多推荐
所有评论(0)