pytorch中nn.Sequential和nn.Module区别与选择
一、nn.Sequentialtorch.nn.Sequential是一个Sequential容器,模块将按照构造函数中传递的顺序添加到模块中。另外,也可以传入一个有序模块。 为了更容易理解,官方给出了一些案例:# Sequential使用实例model = nn.Sequential(nn.Conv2d(1,20,5),nn.ReLU(),nn.Conv2d(20,64,5),nn.ReLU()
·
一、nn.Sequential
torch.nn.Sequential是一个Sequential容器,模块将按照构造函数中传递的顺序添加到模块中。另外,也可以传入一个有序模块。 为了更容易理解,官方给出了一些案例:
# Sequential使用实例
model = nn.Sequential(
nn.Conv2d(1,20,5),
nn.ReLU(),
nn.Conv2d(20,64,5),
nn.ReLU()
)
# Sequential with OrderedDict使用实例
model = nn.Sequential(OrderedDict([
('conv1', nn.Conv2d(1,20,5)),
('relu1', nn.ReLU()),
('conv2', nn.Conv2d(20,64,5)),
('relu2', nn.ReLU())
]))
二、nn.Module
下面我们再用 Module 定义这个模型,下面是使用 Module 的模板
class 网络名字(nn.Module):
def __init__(self, 一些定义的参数):
super(网络名字, self).__init__()
self.layer1 = nn.Linear(num_input, num_hidden)
self.layer2 = nn.Sequential(...)
...
定义需要用的网络层
def forward(self, x): # 定义前向传播
x1 = self.layer1(x)
x2 = self.layer2(x)
x = x1 + x2
...
return x
注意的是,Module 里面也可以使用 Sequential,同时 Module 非常灵活,具体体现在 forward 中,如何复杂的操作都能直观的在 forward 里面执行
三、对比
为了方便比较,我们先用普通方法搭建一个神经网络。
class Net(torch.nn.Module):
def __init__(self, n_feature, n_hidden, n_output):
super(Net, self).__init__()
self.hidden = torch.nn.Linear(n_feature, n_hidden)
self.predict = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):
x = F.relu(self.hidden(x))
x = self.predict(x)
return x
net1 = Net(1, 10, 1)
net2 = torch.nn.Sequential(
torch.nn.Linear(1, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 1)
)
打印这两个net
print(net1)
"""
Net (
(hidden): Linear (1 -> 10)
(predict): Linear (10 -> 1)
)
"""
print(net2)
"""
Sequential (
(0): Linear (1 -> 10)
(1): ReLU ()
(2): Linear (10 -> 1)
)
"""
我们可以发现,使用torch.nn.Sequential会自动加入激励函数, 但是 net1 中, 激励函数实际上是在 forward() 功能中才被调用的.
总结
- 使用torch.nn.Module,我们可以根据自己的需求改变传播过程,如RNN等
- 如果你需要快速构建或者不需要过多的过程,直接使用torch.nn.Sequential即可。
参考:pytorch官方手册
更多推荐
已为社区贡献1条内容
所有评论(0)