解决数据拟合问题最重要方法是最小二乘法和回归分析。如,我们需要从一组测定的数据(例如N个点(xi,yi)(i=0,1,…,m))去求得自变量 x 和因变量 y 的一个近似解表达式 y=f(x),这就是由给定的 N 个点(xi,yi)(i=0,1,…,m)求数据拟合的问题。(注意数据拟合和数据插值是不同的,举个例子:因为测量数据往往不可避免地带有测试误差,而插值多项式又通过所有的点(xi,yi),这样就使插值多项式保留了这些误差,从而影响逼近精度,使得插值效果不理想)
所以使用最小二乘法曲线拟合法:即寻求已知函数的一个逼近函数y=f(x),使得逼近函数从总体与已知函数的偏差按某种方法度量能达到最小,而又不一定通过全部的点(xi,yi),这个时候就需要使用最小二乘法曲线拟合法。
数据拟合的具体做法是:对给定的数据(xi,yi)(i=0,1,…,m),在取定的函数类 ϕ \phi ϕ中使误差 r i = p ( x i ) − y i ( i = 0 , 1 , … , m ) r_{i}=p\left(x_{i}\right)-y_{i}(i=0,1, \ldots, m) ri=p(xi)yi(i=0,1,,m)的平方和最小,即
[ ∑ i = 0 m r i 2 = ∑ i = 0 m [ p ( x i − y i ) ] 2 ] min ⁡ \left[\sum_{i=0}^{m} r_{i}^{2}=\sum_{i=0}^{m}\left[p\left(x_{i}-y_{i}\right)\right]^{2}\right]_{\min } [i=0mri2=i=0m[p(xiyi)]2]min
从几何意义讲,即寻求与给定点 x i − y i ( i = 0 , 1 , … , m ) x_{i}-y_{i}(i=0,1, \ldots, m) xiyi(i=0,1,,m) 的距离平方和为最小的曲线y=p(x)。函数p(x)称为拟合函数或最小二乘解,求拟合函数p(x)的方法称为曲线拟合的最小二乘法。
在曲线拟合中,函数类 ϕ \phi ϕ 可有不同的选取方法。
MATLAB工具箱中提供了最小二乘拟合函数 polyfit() -->多项式曲线拟合
具体调用格式有三种:

  1. P = polyfit(X,Y,N)
  2. [P,S] = polyfit(X,Y,N)
  3. [P,S,MU] = polyfit(X,Y,N)

(1)P = polyfit(X,Y,N) 返回次数为 n 的多项式 p(x) 的系数,该阶数是 y 中数据的最佳拟合(在最小二乘方式中)。p 中的系数按降幂排列,p 的长度为 n+1.
其中 X 为输入的向量x,Y 为得到的函数值,N 表示拟合的最高次数,返回的P值为拟合的多项式:

P ( 1 ) × X n + P ( 2 ) × X n − 1 + … + P ( N ) × X + P ( N + 1 ) P(1) \times X^{n}+P(2) \times X^{n-1}+\ldots+P(N) \times X+P(N+1) P(1)×Xn+P(2)×Xn1++P(N)×X+P(N+1)

(2) [P,S] = polyfit(X,Y,N)还返回一个结构体 S,S可用作 polyval 的输入来获取误差估计值(S为由范德蒙矩阵的QR分解的R分量)。
其中 X 为输入的向量x,Y 为得到的函数值,N 表示拟合的最高次数,返回的P值为拟合的多项式:

P ( 1 ) × X n + P ( 2 ) × X n − 1 + … + P ( N ) × X + P ( N + 1 ) P(1) \times X^{n}+P(2) \times X^{n-1}+\ldots+P(N) \times X+P(N+1) P(1)×Xn+P(2)×Xn1++P(N)×X+P(N+1)

(3)[P,S,MU] = polyfit(X,Y,N)还返回 mu,mu是一个二元素向量,包含中心化值和缩放值。mu(1) 是 mean(x),mu(2) 是 std(x)。使用这些值时,polyfit 将 x 的中心置于零值处并缩放为具有单位标准差:

x ^ = x − x ˉ σ x \hat{x}=\frac{x-\bar{x}}{\sigma_{x}} x^=σxxxˉ

这种中心化和缩放变换可同时改善多项式和拟合算法的数值属性。

下面来看一些具体的例子:(来源于帮助文档,改编)

  • 将多项式与三角函数拟合:
    在区间 [0,4*pi] 中沿余弦曲线生成 10 个等间距的点。
>> x = linspace(0,4*pi,10);
>> y = cos(x);

使用 polyfit 将一个 7 次多项式与这些点拟合。

>> p = polyfit(x,y,7);

在更精细的网格上计算多项式并绘制结果图。

>> x1 = linspace(0,4*pi);
>> y1 = polyval(p,x1);
>> figure
>> plot(x,y,'o')
>> hold on
>> plot(x1,y1,'m')
>> hold off

运行结果如下:
在这里插入图片描述

  • 将多项式与点集拟合
    创建一个由区间 [0,1] 中的 5 个等间距点组成的向量,并计算这些点处的 y(x)= (2+x)^-1 。
>> x=0:0.2:1;   //或者写成  >> x=0:0.2:1;  也可以实现相同的作用
>> y = 1./(2+x);

将 4 次多项式与 5 个点拟合。通常,对于 n 个点,可以拟合 n-1 次多项式以便完全通过这些点。

>> p = polyfit(x,y,4);

在由 0 和 2 之间的点组成的更精细网格上计算原始函数和多项式拟合。

>> x1 = linspace(0,2);
>> y1 = 1./(2+x1);
>> f1 = polyval(p,x1);

在更大的区间 [0,2] 中绘制函数值和多项式拟合,其中包含用于获取以圆形突出显示的多项式拟合的点。多项式拟合在原始 [0,1] 区间中的效果较好,但在该区间外部很快与拟合函数出现差异。

>> figure
>> plot(x,y,'o')
>> hold on
>> plot(x1,y1)
>> plot(x1,f1,'b--')
>> legend('y','y1','f1')

运行结果如下:
在这里插入图片描述

  • 对误差函数进行多项式拟合:
    首先生成 x 点的向量,在区间 [0,1.5*pi] 内等间距分布;然后计算这些点处的 erf(x)。
    注:erf 是误差函数,也称高斯误差函数。
x = (0:0.10:1.5*pi)';
 y=erf(x);

确定6次逼近多项式的系数。

p=polyfit(x,y,6)

p =

0.0019   -0.0259    0.1242   -0.1785   -0.3442    1.2684   -0.0095

为了查看拟合情况如何,在各数据点处计算多项式,并生成说明数据、拟合和误差的一个表。

f=polyval(p,x);
T=table(x,y,f,y-f,'VariableNames',{'X','Y','Fit','FitError'})

T =

48×4 table

 X        Y          Fit         FitError  
___    _______    __________    ___________

  0          0    -0.0094811      0.0094811
0.1    0.11246       0.11375     -0.0012876
0.2     0.2227       0.22919     -0.0064911
0.3    0.32863       0.33619     -0.0075599
0.4    0.42839       0.43431      -0.005914
0.5     0.5205       0.52334     -0.0028408
0.6    0.60386       0.60326     0.00059392
0.7     0.6778        0.6742      0.0035981
0.8     0.7421       0.73643      0.0056695
0.9    0.79691       0.79033      0.0065794
  1     0.8427       0.83637      0.0063316
1.1    0.88021        0.8751      0.0051058
1.2    0.91031       0.90712       0.003194
1.3    0.93401       0.93307     0.00093826
1.4    0.95229       0.95361      -0.001323
1.5    0.96611        0.9694     -0.0032971
...

在该区间中,插值与实际值非常符合。创建一个绘图,以显示在该区间以外,外插值与实际数据值如何快速偏离。

 x1=(0:0.10:2*pi)';
 y1=erf(x1);
 f1=polyval(p,x1);
 plot(x,y,'o')
 plot(x1,y1,'-')
 hold on
 plot(x1,y1,'-')
 plot(x1,f1,'g-')
 axis([0  5.5  0  3])

在这里插入图片描述

  • 使用中心化和缩放改善数值属性
    创建一个由 1750 - 2000 年的人口数据组成的表,并绘制数据点。
 year = (1750:25:2000)';
 pop = 1e6*[791 856 978 1050 1262 1544 1650 2532 6122 8170 11560]';
 T = table(year, pop)

T =

11×2 table

year       pop   
____    _________

1750     7.91e+08
1775     8.56e+08
1800     9.78e+08
1825     1.05e+09
1850    1.262e+09
1875    1.544e+09
1900     1.65e+09
1925    2.532e+09
1950    6.122e+09
1975     8.17e+09
2000    1.156e+10
 plot(year,pop,'square')

在这里插入图片描述
使用带三个输入的 polyfit 拟合一个使用中心化和缩放的 5 次多项式,这将改善问题的数值属性。polyfit 将 year 中的数据以 0 为进行中心化,并缩放为具有标准差 1,这可避免在拟合计算中出现病态的 Vandermonde (范德蒙)矩阵。

[p,~,mu] = polyfit(T.year, T.pop, 5);

使用带四个输入的 polyval,根据缩放后的年份 (year-mu(1))/mu(2) 计算 p。绘制结果对原始年份的图。

f = polyval(p,year,[],mu);
hold on
plot(year,f)

在这里插入图片描述

  • 简单线性回归
    将一个简单线性回归模型与一组离散二维数据点拟合。
    创建几个由样本数据点 (x,y) 组成的向量。对数据进行一次多项式拟合。
>> x=1:40;
>> y=0.4*x-1.5*randn(1,60);
注意:这里 矩阵维度必须一致。 所以第二行代码的输入是错误的
 
 y=0.4*x-1.5*randn(1,40);
 p=polyfit(x,y,1);

计算在 x 中的点处拟合的多项式 p。用这些数据绘制得到的线性回归模型。

 f = polyval(p,x); 
 plot(x,y,'o',x,f,'-')
 legend('data','linear fit')

在这里插入图片描述

  • 具有误差估计值的线性回归
    将一个线性模型拟合到一组数据点并绘制结果,其中包含预测区间为 95% 的估计值。
    创建几个由样本数据点 (x,y) 组成的向量。使用 polyfit 对数据进行一次多项式拟合。指定两个输出以返回线性拟合的系数以及误差估计结构体。
x = 1:100; 
y = -0.3*x + 2*randn(1,100); 
[p,S] = polyfit(x,y,1);

计算以 p 为系数的一次多项式在 x 中各点处的拟合值。将误差估计结构体指定为第三个输入,以便 polyval 计算标准误差的估计值。标准误差估计值在 delta 中返回。

[y_fit,delta] = polyval(p,x,S);

绘制原始数据、线性拟合和 95% 预测区间 y ± 2 Δ y \pm 2 \Delta y±2Δ

plot(x,y,'go')
hold on
plot(x,y_fit,'r-')
plot(x,y_fit+2*delta,'m--',x,y_fit-2*delta,'m--')
title('Linear Fit of Data with 95% Prediction Interval')
legend('Data','Linear Fit','95% Prediction Interval')

在这里插入图片描述

  • 输入参数解释:
  • x – 查询点 (向量)
    查询点,指定为一个向量。x 中的点对应于 y 中包含的拟合函数值。如果 x 不是向量,则 polyfit 将其转换为列向量 x( : )。😃
    x 具有重复(或接近重复)的点或者如果 x 可能需要中心化和缩放时的警告消息结果。
    **数据类型:**single | double
    复数支持:
  • y – 查询点位置的拟合值 (向量)
    查询点位置的拟合值,指定为向量。y 中的值对应于 x 中包含的查询点。如果 y 不是向量,则 polyfit 将其转换为列向量 y ( : ) 。😃
    **数据类型:**single | double
    复数支持:
  • n --多项式拟合的次数 (正整数标量)
    多项式拟合的次数,指定为正整数标量。n 指定 p 中最左侧系数的多项式幂
  • 输出参数解释:
  • p – 最小二乘拟合多项式系数(向量)

最小二乘拟合多项式系数,以向量的形式返回。p 的长度为 n+1,包含按降幂排列的多项式系数,最高幂为 n。如果 x 或 y 包含 NaN 值且 n < length(x),则 p 的所有元素均为 NaN。

使用 polyval 计算 p 在查询点处的解。

  • S – 误差估计结构体 (结构体)
    误差估计结构体。此可选输出结构体主要用作 polyval 函数的输入,以获取误差估计值。S 包含以下字段:
字段说明
RVandermonde 矩阵 x 的 QR 分解的三角因子
df自由度
normr残差的范数

如果 y 中的数据是随机的,则 p 的估计协方差矩阵是 (Rinv*Rinv’)*normr^2/df,其中 Rinv 是 R 的逆矩阵。

如果 y 中数据的误差呈独立正态分布,并具有常量方差,则 [y,delta] = polyval(…) 可生成至少包含 50% 的预测值的误差边界。即 y ± delta 至少包含 50% 对 x 处的未来观测值的预测值。

  • mu – 中心化值和缩放值

中心化值和缩放值,以二元素向量形式返回。mu(1) 为 mean(x),mu(2) 为 std(x)。这些值以单位标准差将 x 中的查询点的中心置于零值处。

使用 mu 作为 polyval 的第四个输入以计算 p 在缩放点 (x - mu(1))/mu(2) 处的解。

局限性

  • 在涉及很多点的问题中,使用 polyfit 增加多项式拟合的次数并不总能得到较好的拟合。高次多项式可以在数据点之间振动,导致与数据之间的拟合较差。在这些情况下,可使用低次多项式拟合(点之间倾向于更平滑)或不同的方法,具体取决于该问题。
  • 多项式在本质上是无边界的振荡函数。所以,它们并不非常适合外插有界的数据或单调(递增或递减)的数据。

算法:
polyfit 使用 x 构造具有 n+1 列和 m = length(x) 行的 Vandermonde 矩阵 V 并生成线性方程组
( x 1 n x 1 n − 1 … 1 n 2 x 2 − 1 … 1 ⋮ ⋮ ⋱ ⋮ n m x m − 1 … 1 ) ( p 1 p 2 ⋮ p n + 1 ) = ( y 1 y 2 ⋮ y m ) \left(\begin{array}{cccc} x_{1}^{n} & x_{1}^{n-1} & \ldots & 1 \\ n_{2} & x_{2}-1 & \ldots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ n_{m} & x_{m}-1 & \ldots & 1 \end{array}\right)\left(\begin{array}{c} p_{1} \\ p_{2} \\ \vdots \\ p_{n+1} \end{array}\right)=\left(\begin{array}{c} y_{1} \\ y_{2} \\ \vdots \\ y_{m} \end{array}\right) x1nn2nmx1n1x21xm1111p1p2pn+1=y1y2ym

其中 polyfit 使用 p = V\y 求解。由于 Vandermonde 矩阵中的列是向量 x 的幂,因此条件数 V 对于高阶拟合来说通常较大,生成一个奇异系数矩阵。在这些情况下,中心化和缩放可改善系统的数值属性以产生更可靠的拟合。

Logo

旨在为数千万中国开发者提供一个无缝且高效的云端环境,以支持学习、使用和贡献开源项目。

更多推荐