logo
publist
写文章

简介

该用户还未填写简介

擅长的技术栈

可提供的服务

暂无可提供的服务

Python & 机器学习之项目实践

机器学习是一项经验技能,经验越多越好。在项目建立的过程中,实践是掌握机器学习的最佳手段。在实践过程中,通过实际操作加深对分类和回归问题的每一个步骤的理解,达到学习机器学习的目的。预测模型项目模板不能只通过阅读来掌握机器学习的技能,需要进行大量的练习。本文将介绍一个通用的机器学习的项目模板,创建这个模板总共有六个步骤。通过本文将学到:端到端地预测(

《零基础入门深度学习》系列文章(教程+代码)

转载:原地址:http://blog.csdn.net/TS1130/article/details/53244576无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(DeepLearning)这个超热的技术,会不会感觉马上就out了?现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编

#深度学习#人工智能
数据挖掘之特征选择

特征选择(排序)对于数据科学家、机器学习从业者来说非常重要。好的特征选择能够提升模型的性能,更能帮助我们理解数据的特点、底层结构,这对进一步改善模型、算法都有着重要作用。特征选择主要有两个功能:减少特征数量、降维,使模型泛化能力更强,减少过拟合增强对特征和特征值之间的理解拿到数据集,一个特征选择方法,往往很难同时完成这两个目的。通常情况下,我们经常不管三七二十一,选择一种自

深度学习中的Attention模型介绍及其进展

近期对深度学习中的Attention模型进行了深入研究,该模型在图像识别、语音识别和自然语言处理三大深度学习的热门领域均有广泛的使用,是2014和2015年深度学习领域的重要进展。现对其原理、主要应用及研究进展进行详细介绍。1. 基本原理  Attention模型最初应用于图像识别,模仿人看图像时,目光的焦点在不同的物体上移动。当神经网络对图像或语言进行识别时,每次集中于部分特征上

OpenCV+深度学习预训练模型,简单搞定图像识别 | 教程

转载:https://mp.weixin.qq.com/s/J6eo4MRQY7jLo7P-b3nvJg李林 编译自 pyimagesearch作者 Adrian Rosebrock量子位 报道 | 公众号 QbitAIOpenCV是一个2000年发布的开源计算机视觉库,有进行物体识别、图像分割、人脸识别、动作识别等多种功能,可以在Linux、Windows

#深度学习
到底了