简介
地平线开发者社区旨在连接智能驾驶领域的开发者和对相关技术感兴趣的其他行业开发者、从业者。 我们将为大家提供最前沿的智驾相关技术资讯和丰富的技术活动,营造积极向上的开发者文化与氛围,共同构建智能驾驶的开发者生态体系。
擅长的技术栈
可提供的服务
暂无可提供的服务
DDR 带宽(Double Data Rate Bandwidth)是指 DDR 内存在一秒内可以传输的数据量,通常以 GB/s(Gigabytes per second) 为单位。它是衡量内存系统性能的重要指标,直接影响系统的数据吞吐能力。 1.如何计算 DDR 带宽 计算 DDR 理论带宽的公式为: DDR主频 * 位宽 = 理论带宽 其中,位宽 (bit width)指的是内存总线的位宽,例
DDR 带宽(Double Data Rate Bandwidth)是指 DDR 内存在一秒内可以传输的数据量,通常以 GB/s(Gigabytes per second) 为单位。它是衡量内存系统性能的重要指标,直接影响系统的数据吞吐能力。 1.如何计算 DDR 带宽 计算 DDR 理论带宽的公式为: DDR主频 * 位宽 = 理论带宽 其中,位宽 (bit width)指的是内存总线的位宽,例
• Vision Mamba 论文链接: https://arxiv.org/abs/2401.09417 • 项目主页: https://github.com/hustvl/Vim 简介 本文的工作Vision Mamba[1]发表在ICML 2024。研究的问题是如何设计新型神经网络来实现高效的视觉表示学习。该任务要求神经网络模型能够在处理高分辨率图像时既保持高性能,又具备计算和内存
• Vision Mamba 论文链接: https://arxiv.org/abs/2401.09417 • 项目主页: https://github.com/hustvl/Vim 简介 本文的工作Vision Mamba[1]发表在ICML 2024。研究的问题是如何设计新型神经网络来实现高效的视觉表示学习。该任务要求神经网络模型能够在处理高分辨率图像时既保持高性能,又具备计算和内存
该示例为参考算法,仅作为在 征程 6 上模型部署的设计参考,非量产算法。 1.简介 激光雷达天然地具有深度信息,摄像头可以提供丰富的语义信息,它们是车载视觉感知系统中两个最关键的传感器。但是,如果激光雷达或者摄像头发生故障,则整个感知框架不能做出任何预测,这在根本上限制了实际自动驾驶场景的部署能力。目前主流的感知架构选择在特征层面进行多传感器融合,即中融合,其中比较有代表性的路线就是 BEV 范
该示例为参考算法,仅作为在 征程 6 上模型部署的设计参考,非量产算法。 1.简介 激光雷达天然地具有深度信息,摄像头可以提供丰富的语义信息,它们是车载视觉感知系统中两个最关键的传感器。但是,如果激光雷达或者摄像头发生故障,则整个感知框架不能做出任何预测,这在根本上限制了实际自动驾驶场景的部署能力。目前主流的感知架构选择在特征层面进行多传感器融合,即中融合,其中比较有代表性的路线就是 BEV 范
1.概述 征程 6X 系统在 release 编译时支持内核模块签名验证,仅加载使用正确密钥进行数字签名的内核模块。禁止加载未签名的内核模块或使用错误密钥签名的内核模块,客户需要替换成自己的 key 进行签名。 模块签名启用后,Linux 内核将仅加载使用正确密钥进行数字签名的内核模块。禁止加载未签名的内核模块或使用错误密钥签名的内核模块来进一步强化系统安全。 关于内核模块签名的介绍请看下文: 2
1.概述 征程 6X 系统在 release 编译时支持内核模块签名验证,仅加载使用正确密钥进行数字签名的内核模块。禁止加载未签名的内核模块或使用错误密钥签名的内核模块,客户需要替换成自己的 key 进行签名。 模块签名启用后,Linux 内核将仅加载使用正确密钥进行数字签名的内核模块。禁止加载未签名的内核模块或使用错误密钥签名的内核模块来进一步强化系统安全。 关于内核模块签名的介绍请看下文: 2
01 技术背景 YOLOv5 是一种高效的目标检测算法,尤其在实时目标检测任务中表现突出。YOLOv5 通过三种不同尺度的检测头分别处理大、中、小物体;检测头共包括三个关键任务:边界框回归、类别预测、置信度预测;每个检测头都会逐像素地使用三个 Anchor,以帮助算法更准确地预测物体边界。 YOLOv5 具有多种不同大小的模型(YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、Y
01 技术背景 YOLOv5 是一种高效的目标检测算法,尤其在实时目标检测任务中表现突出。YOLOv5 通过三种不同尺度的检测头分别处理大、中、小物体;检测头共包括三个关键任务:边界框回归、类别预测、置信度预测;每个检测头都会逐像素地使用三个 Anchor,以帮助算法更准确地预测物体边界。 YOLOv5 具有多种不同大小的模型(YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、Y