k8s概念入门之kube-proxy-针对早期(0.4)版本阅读
k8s的kube-proxy分析Kube-proxy主要是伴随着kubtlet进程一起部署在每个node节点中,proxy的功能主要就是为了完成在k8s集群中实现集群内部的通信,也可完成集群外的数据到集群内部的通信。从功能上来说确实是完成了完成更高层次的网络封装,让用户能够忽略网络层的部分细节从而专注于业务层的功能。在早期的k8s的实现中,使用了最简单快速的方式来实现流量的转发,即通过用户态的数据
k8s的kube-proxy分析
Kube-proxy主要是伴随着kubtlet进程一起部署在每个node节点中,proxy的功能主要就是为了完成在k8s集群中实现集群内部的通信,也可完成集群外的数据到集群内部的通信。从功能上来说确实是完成了更高层次的网络封装,让用户能够忽略网络层的部分细节从而专注于业务层的功能。
在早期的k8s的实现中,使用了最简单快速的方式来实现流量的转发,即通过用户态的数据接受直接转发到后端的目标地址上去。
首先查看proxy的main函数:
var (
etcdServerList util.StringList // etcd监听的服务器列表
etcdConfigFile = flag.String("etcd_config", "", "The config file for the etcd client. Mutually exclusive with -etcd_servers")
bindAddress = util.IP(net.ParseIP("0.0.0.0")) // 本地绑定的端口
clientConfig = &client.Config{} // 客户端配置
)
func init() {
client.BindClientConfigFlags(flag.CommandLine, clientConfig)
flag.Var(&etcdServerList, "etcd_servers", "List of etcd servers to watch (http://ip:port), comma separated (optional). Mutually exclusive with -etcd_config")
flag.Var(&bindAddress, "bind_address", "The address for the proxy server to serve on (set to 0.0.0.0 for all interfaces)")
}
func main() {
flag.Parse()
util.InitLogs()
defer util.FlushLogs()
verflag.PrintAndExitIfRequested()
serviceConfig := config.NewServiceConfig() // 生成一个serviceConfig
endpointsConfig := config.NewEndpointsConfig() // 生成endpoint结构
// define api config source
if clientConfig.Host != "" {
glog.Infof("Using api calls to get config %v", clientConfig.Host)
client, err := client.New(clientConfig)
if err != nil {
glog.Fatalf("Invalid API configuration: %v", err)
}
config.NewSourceAPI(
client,
30*time.Second,
serviceConfig.Channel("api"),
endpointsConfig.Channel("api"),
) // 生成对应的配置中心
} else {
var etcdClient *etcd.Client // etcd客户端连接
// Set up etcd client
if len(etcdServerList) > 0 {
// Set up logger for etcd client
etcd.SetLogger(util.NewLogger("etcd "))
etcdClient = etcd.NewClient(etcdServerList)
} else if *etcdConfigFile != "" {
// Set up logger for etcd client
etcd.SetLogger(util.NewLogger("etcd "))
var err error
etcdClient, err = etcd.NewClientFromFile(*etcdConfigFile)
if err != nil {
glog.Fatalf("Error with etcd config file: %v", err)
}
}
// Create a configuration source that handles configuration from etcd.
if etcdClient != nil {
glog.Infof("Using etcd servers %v", etcdClient.GetCluster())
config.NewConfigSourceEtcd(etcdClient,
serviceConfig.Channel("etcd"),
endpointsConfig.Channel("etcd")) // 设置从etcd读取配置
}
}
loadBalancer := proxy.NewLoadBalancerRR() // 通过负载均衡的算法
proxier := proxy.NewProxier(loadBalancer, net.IP(bindAddress)) // 监听代理信息
// Wire proxier to handle changes to services
serviceConfig.RegisterHandler(proxier)
// And wire loadBalancer to handle changes to endpoints to services
endpointsConfig.RegisterHandler(loadBalancer) // 注册endpoint
// Just loop forever for now...
select {}
}
从执行流程上一块看出,通过service和endpoint的概念,将service对应所有的服务与endpoint来绑定,即endpoint绑定所有该服务后续对应的pod的节点。如果从etcd来监控信息变化的方式的话,就会通过etcd监控的增删改来控制当前的proxy的端口的开启或关闭。
我们继续查看config.NewConfigSourceEtcd来查看具体的运行逻辑:
// NewConfigSourceEtcd creates a new ConfigSourceEtcd and immediately runs the created ConfigSourceEtcd in a goroutine.
func NewConfigSourceEtcd(client *etcd.Client, serviceChannel chan ServiceUpdate, endpointsChannel chan EndpointsUpdate) ConfigSourceEtcd {
config := ConfigSourceEtcd{
client: client, // 传入的etcd实例客户端
serviceChannel: serviceChannel, // 监听的service的chan
endpointsChannel: endpointsChannel, // 监听的endpoint的chan
interval: 2 * time.Second,
}
go config.Run() // 开始监听变化
return config
}
// Run begins watching for new services and their endpoints on etcd.
func (s ConfigSourceEtcd) Run() {
// Initially, just wait for the etcd to come up before doing anything more complicated.
var services []api.Service
var endpoints []api.Endpoints
var err error
for {
services, endpoints, err = s.GetServices() // 获取当前的service信息
if err == nil {
break
}
glog.V(1).Infof("Failed to get any services: %v", err)
time.Sleep(s.interval)
}
if len(services) > 0 {
serviceUpdate := ServiceUpdate{Op: SET, Services: services} // 如果获取有service则添加到设置chan中
s.serviceChannel <- serviceUpdate
}
if len(endpoints) > 0 { // 如果获取有endpoints则发送到chan中
endpointsUpdate := EndpointsUpdate{Op: SET, Endpoints: endpoints}
s.endpointsChannel <- endpointsUpdate
}
// Ok, so we got something back from etcd. Let's set up a watch for new services, and
// their endpoints
go util.Forever(s.WatchForChanges, 1*time.Second) // 每隔一秒运行监听的变化 根据service和endpoint来添加服务信息
for {
services, endpoints, err = s.GetServices() // 获取服务信息 并通知到每个通道
if err != nil {
glog.Errorf("ConfigSourceEtcd: Failed to get services: %v", err)
} else {
if len(services) > 0 {
serviceUpdate := ServiceUpdate{Op: SET, Services: services}
s.serviceChannel <- serviceUpdate
}
if len(endpoints) > 0 {
endpointsUpdate := EndpointsUpdate{Op: SET, Endpoints: endpoints}
s.endpointsChannel <- endpointsUpdate
}
}
time.Sleep(30 * time.Second)
}
}
func (s ConfigSourceEtcd) WatchForChanges() {
glog.V(4).Info("Setting up a watch for new services")
watchChannel := make(chan *etcd.Response)
go s.client.Watch("/registry/services/", 0, true, watchChannel, nil) // 监听新加入的service信息
for {
watchResponse, ok := <-watchChannel // 获取监听的数据
if !ok {
break
}
s.ProcessChange(watchResponse) // 根据service来进行处理
}
}
func (s ConfigSourceEtcd) ProcessChange(response *etcd.Response) {
glog.V(4).Infof("Processing a change in service configuration... %s", *response)
// If it's a new service being added (signified by a localport being added)
// then process it as such
if strings.Contains(response.Node.Key, "/endpoints/") {
s.ProcessEndpointResponse(response) // 如果包含endpoints信息则添加endpoint信息
} else if response.Action == "set" {
service, err := etcdResponseToService(response) // 如果是set操作则新增servcie
if err != nil {
glog.Errorf("Failed to parse %s Port: %s", response, err)
return
}
glog.V(4).Infof("New service added/updated: %#v", service)
serviceUpdate := ServiceUpdate{Op: ADD, Services: []api.Service{*service}}
s.serviceChannel <- serviceUpdate
return
}
if response.Action == "delete" { // 如果是删除则发送删除信号
parts := strings.Split(response.Node.Key[1:], "/")
if len(parts) == 4 {
glog.V(4).Infof("Deleting service: %s", parts[3])
serviceUpdate := ServiceUpdate{Op: REMOVE, Services: []api.Service{{TypeMeta: api.TypeMeta{ID: parts[3]}}}}
s.serviceChannel <- serviceUpdate
return
}
glog.Warningf("Unknown service delete: %#v", parts)
}
}
func (s ConfigSourceEtcd) ProcessEndpointResponse(response *etcd.Response) {
glog.V(4).Infof("Processing a change in endpoint configuration... %s", *response)
var endpoints api.Endpoints
err := latest.Codec.DecodeInto([]byte(response.Node.Value), &endpoints) // 处理endpoint的信息变更
if err != nil {
glog.Errorf("Failed to parse service out of etcd key: %v : %+v", response.Node.Value, err)
return
}
endpointsUpdate := EndpointsUpdate{Op: ADD, Endpoints: []api.Endpoints{endpoints}}
s.endpointsChannel <- endpointsUpdate
}
通过初始化的流程可知,最终无论是servcie的变更还是endpoint的变更最终都发送到了service的通道和endpoint的通道中去,这其中的通道的初始化与工作就分别放在了ServiceConfig和EndpointsConfig中去了。
type ServiceConfig struct {
mux *config.Mux
watcher *config.Watcher
store *serviceStore
}
// NewServiceConfig creates a new ServiceConfig.
// It immediately runs the created ServiceConfig.
func NewServiceConfig() *ServiceConfig {
updates := make(chan struct{}) // 初始化通道
store := &serviceStore{updates: updates, services: make(map[string]map[string]api.Service)} // 初始化数据
mux := config.NewMux(store)
watcher := config.NewWatcher() // 初始化一个watcher
go watchForUpdates(watcher, store, updates) // 监听变化
return &ServiceConfig{mux, watcher, store}
}
func (c *ServiceConfig) RegisterHandler(handler ServiceConfigHandler) {
c.watcher.Add(config.ListenerFunc(func(instance interface{}) {
handler.OnUpdate(instance.([]api.Service))
})) // 给watcher添加一个回调处理函数
}
func (c *ServiceConfig) Channel(source string) chan ServiceUpdate {
ch := c.mux.Channel(source)
serviceCh := make(chan ServiceUpdate) // 生成一个管道并通过该管道给通道通信
go func() {
for update := range serviceCh {
ch <- update
}
close(ch)
}()
return serviceCh
}
一旦service有信息更新就会调用servcieConfig注册的proxier,endpoints有更新则调用注册的loadBalancer,这其中的回调的实现使用了订阅发布的模式,一旦该通道有消息则通知到所有订阅的handler处理。
我们查看一下proxier的流程:
// Proxier is a simple proxy for TCP connections between a localhost:lport
// and services that provide the actual implementations.
type Proxier struct {
loadBalancer LoadBalancer // 复杂均衡的组件
mu sync.Mutex // protects serviceMap
serviceMap map[string]*serviceInfo //保存的service信息
address net.IP // 监听的地址
}
// NewProxier returns a new Proxier given a LoadBalancer and an
// address on which to listen
func NewProxier(loadBalancer LoadBalancer, address net.IP) *Proxier {
return &Proxier{
loadBalancer: loadBalancer,
serviceMap: make(map[string]*serviceInfo),
address: address,
}
}
// This assumes proxier.mu is not locked.
func (proxier *Proxier) stopProxy(service string, info *serviceInfo) error {
proxier.mu.Lock()
defer proxier.mu.Unlock()
return proxier.stopProxyInternal(service, info)
}
// This assumes proxier.mu is locked.
func (proxier *Proxier) stopProxyInternal(service string, info *serviceInfo) error {
if !info.setActive(false) {
return nil
}
glog.V(3).Infof("Removing service: %s", service)
delete(proxier.serviceMap, service)
return info.socket.Close()
}
func (proxier *Proxier) getServiceInfo(service string) (*serviceInfo, bool) {
proxier.mu.Lock()
defer proxier.mu.Unlock()
info, ok := proxier.serviceMap[service]
return info, ok
}
func (proxier *Proxier) setServiceInfo(service string, info *serviceInfo) {
proxier.mu.Lock()
defer proxier.mu.Unlock()
proxier.serviceMap[service] = info
}
// addServiceOnUnusedPort starts listening for a new service, returning the
// port it's using. For testing on a system with unknown ports used. The timeout only applies to UDP
// connections, for now.
func (proxier *Proxier) addServiceOnUnusedPort(service string, protocol api.Protocol, timeout time.Duration) (string, error) {
sock, err := newProxySocket(protocol, proxier.address, 0)
if err != nil {
return "", err
}
_, port, err := net.SplitHostPort(sock.Addr().String())
if err != nil {
return "", err
}
portNum, err := strconv.Atoi(port)
if err != nil {
return "", err
}
proxier.setServiceInfo(service, &serviceInfo{
port: portNum,
protocol: protocol,
active: true,
socket: sock,
timeout: timeout,
})
proxier.startAccepting(service, sock)
return port, nil
}
func (proxier *Proxier) startAccepting(service string, sock proxySocket) {
glog.V(1).Infof("Listening for %s on %s:%s", service, sock.Addr().Network(), sock.Addr().String())
go func(service string, proxier *Proxier) {
defer util.HandleCrash()
sock.ProxyLoop(service, proxier)
}(service, proxier)
}
// How long we leave idle UDP connections open.
const udpIdleTimeout = 1 * time.Minute
// OnUpdate manages the active set of service proxies.
// Active service proxies are reinitialized if found in the update set or
// shutdown if missing from the update set.
func (proxier *Proxier) OnUpdate(services []api.Service) {
glog.V(4).Infof("Received update notice: %+v", services)
activeServices := util.StringSet{}
for _, service := range services { // 遍历服务信息
activeServices.Insert(service.ID)
info, exists := proxier.getServiceInfo(service.ID) // 检查服务是否存在
// TODO: check health of the socket? What if ProxyLoop exited?
if exists && info.isActive() && info.port == service.Port { // 如果已经存在则跳过
continue
}
if exists && info.port != service.Port { // 如果存在但是服务端口不同则停止原代理
err := proxier.stopProxy(service.ID, info)
if err != nil {
glog.Errorf("error stopping %s: %v", service.ID, err)
}
}
glog.V(3).Infof("Adding a new service %s on %s port %d", service.ID, service.Protocol, service.Port) // 新增新的代理
sock, err := newProxySocket(service.Protocol, proxier.address, service.Port) // 根据协议来新增代理信息
if err != nil {
glog.Errorf("Failed to get a socket for %s: %+v", service.ID, err)
continue
}
proxier.setServiceInfo(service.ID, &serviceInfo{
port: service.Port,
protocol: service.Protocol,
active: true,
socket: sock,
timeout: udpIdleTimeout,
}) // 设置当前的代理
proxier.startAccepting(service.ID, sock) // 设置服务开始接受流量
}
proxier.mu.Lock()
defer proxier.mu.Unlock()
for name, info := range proxier.serviceMap { // 检查当前service是否存活如果不存活则停止
if !activeServices.Has(name) {
err := proxier.stopProxyInternal(name, info)
if err != nil {
glog.Errorf("error stopping %s: %v", name, err)
}
}
}
}
再新生成的对象中利用newProxySocket来生成对应协议的代理,当前的代理方式分为tcp和udp两种。
func newProxySocket(protocol api.Protocol, ip net.IP, port int) (proxySocket, error) {
host := ip.String()
switch strings.ToUpper(string(protocol)) {
case "TCP":
listener, err := net.Listen("tcp", net.JoinHostPort(host, strconv.Itoa(port))) // tcp代理
if err != nil {
return nil, err
}
return &tcpProxySocket{listener}, nil
case "UDP":
addr, err := net.ResolveUDPAddr("udp", net.JoinHostPort(host, strconv.Itoa(port))) // udp代理
if err != nil {
return nil, err
}
conn, err := net.ListenUDP("udp", addr)
if err != nil {
return nil, err
}
return &udpProxySocket{conn}, nil
}
return nil, fmt.Errorf("Unknown protocol %q", protocol)
}
以udp为例,介绍一下流程:
// udpProxySocket implements proxySocket. Close() is implemented by net.UDPConn. When Close() is called,
// no new connections are allowed and existing connections are broken.
// TODO: We could lame-duck this ourselves, if it becomes important.
type udpProxySocket struct {
*net.UDPConn
}
func (udp *udpProxySocket) Addr() net.Addr {
return udp.LocalAddr()
}
// Holds all the known UDP clients that have not timed out.
type clientCache struct {
mu sync.Mutex
clients map[string]net.Conn // addr string -> connection
}
func newClientCache() *clientCache {
return &clientCache{clients: map[string]net.Conn{}}
}
func (udp *udpProxySocket) ProxyLoop(service string, proxier *Proxier) {
info, found := proxier.getServiceInfo(service) // 首先获取service信息
if !found {
glog.Errorf("Failed to find service: %s", service)
return
}
activeClients := newClientCache() // 查看缓存的客户端
var buffer [4096]byte // 4KiB should be enough for most whole-packets 设置接收缓冲区大小
for {
if !info.isActive() {
break
}
// Block until data arrives.
// TODO: Accumulate a histogram of n or something, to fine tune the buffer size.
n, cliAddr, err := udp.ReadFrom(buffer[0:]) // 读取缓冲区数据
if err != nil {
if e, ok := err.(net.Error); ok { // 如果错误则关闭
if e.Temporary() {
glog.V(1).Infof("ReadFrom had a temporary failure: %v", err)
continue
}
}
glog.Errorf("ReadFrom failed, exiting ProxyLoop: %v", err)
break
}
// If this is a client we know already, reuse the connection and goroutine.
svrConn, err := udp.getBackendConn(activeClients, cliAddr, proxier, service, info.timeout) // 获取反向代理的客户端信息
if err != nil {
continue
}
// TODO: It would be nice to let the goroutine handle this write, but we don't
// really want to copy the buffer. We could do a pool of buffers or something.
_, err = svrConn.Write(buffer[0:n]) 将读取的数据反向写入到后端代理的客户端
if err != nil {
if !logTimeout(err) {
glog.Errorf("Write failed: %v", err)
// TODO: Maybe tear down the goroutine for this client/server pair?
}
continue
}
svrConn.SetDeadline(time.Now().Add(info.timeout)) // 设置超时时间
if err != nil {
glog.Errorf("SetDeadline failed: %v", err)
continue
}
}
}
func (udp *udpProxySocket) getBackendConn(activeClients *clientCache, cliAddr net.Addr, proxier *Proxier, service string, timeout time.Duration) (net.Conn, error) {
activeClients.mu.Lock()
defer activeClients.mu.Unlock()
svrConn, found := activeClients.clients[cliAddr.String()] // 获取缓存的连接
if !found {
// TODO: This could spin up a new goroutine to make the outbound connection,
// and keep accepting inbound traffic.
glog.V(2).Infof("New UDP connection from %s", cliAddr) // 如果没有则创建
endpoint, err := proxier.loadBalancer.NextEndpoint(service, cliAddr) // 根据调度算法来选择连接的后端
if err != nil {
glog.Errorf("Couldn't find an endpoint for %s %v", service, err)
return nil, err
}
glog.V(4).Infof("Mapped service %s to endpoint %s", service, endpoint)
svrConn, err = net.DialTimeout("udp", endpoint, endpointDialTimeout) // 新建连接
if err != nil {
// TODO: Try another endpoint?
glog.Errorf("Dial failed: %v", err)
return nil, err
}
activeClients.clients[cliAddr.String()] = svrConn // 保存连接
go func(cliAddr net.Addr, svrConn net.Conn, activeClients *clientCache, timeout time.Duration) {
defer util.HandleCrash()
udp.proxyClient(cliAddr, svrConn, activeClients, timeout)
}(cliAddr, svrConn, activeClients, timeout) // 通过协程来同步将数据发送给后端连接
}
return svrConn, nil
}
// This function is expected to be called as a goroutine.
func (udp *udpProxySocket) proxyClient(cliAddr net.Addr, svrConn net.Conn, activeClients *clientCache, timeout time.Duration) {
defer svrConn.Close()
var buffer [4096]byte
for {
n, err := svrConn.Read(buffer[0:]) // 读取数据
if err != nil {
if !logTimeout(err) {
glog.Errorf("Read failed: %v", err)
}
break
}
svrConn.SetDeadline(time.Now().Add(timeout)) // 设置超时时间
if err != nil {
glog.Errorf("SetDeadline failed: %v", err)
break
}
n, err = udp.WriteTo(buffer[0:n], cliAddr) // 将数据写入
if err != nil {
if !logTimeout(err) {
glog.Errorf("WriteTo failed: %v", err)
}
break
}
}
activeClients.mu.Lock()
delete(activeClients.clients, cliAddr.String()) // 退出后删除该连接信息
activeClients.mu.Unlock()
}
到此为止,基本上一整个的流量转发的流程就基本结束,这就是用户态流量转发的思路。
总结
k8s早期版本0.4只实现了用户态的流量转发,并支持了两种协议tcp和udp流量转发,转发的规则是根据在etcd中监控到的信息来将对应的service的信息转发到对应的pod上去,从而完成整个流量在k8s集群中的流转。由于本人才疏学浅,如有错误请批评指正。
更多推荐
所有评论(0)