深入剖析zookeeper原理
一.简介ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。二.基本
一.简介
ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件。它是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组服务等。
ZooKeeper的目标就是封装好复杂易出错的关键服务,将简单易用的接口和性能高效、功能稳定的系统提供给用户。
二.基本概念
2.1角色
角色主要有以下三类:
系统模型:
2.2特性
1.最终一致性:client不论连接到哪个Server,展示给它都是同一个视图,这是zookeeper最重要的性能。
2 .可靠性:具有简单、健壮、良好的性能,如果消息m被到一台服务器接受,那么它将被所有的服务器接受。
3 .实时性:Zookeeper保证客户端将在一个时间间隔范围内获得服务器的更新信息,或者服务器失效的信息。但由于网络延时等原因,Zookeeper不能保证两个客户端能同时得到刚更新的数据,如果需要最新数据,应该在读数据之前调用sync()接口。
4 .等待无关(wait-free):慢的或者失效的client不得干预快速的client的请求,使得每个client都能有效的等待。
5.原子性:更新只能成功或者失败,没有中间状态。
6 .顺序性:包括全局有序和偏序两种:全局有序是指如果在一台服务器上消息a在消息b前发布,则在所有Server上消息a都将在消息b前被发布;偏序是指如果一个消息b在消息a后被同一个发送者发布,a必将排在b前面。
三.工作原理
Zookeeper的核心是原子广播,这个机制保证了各个Server之间的同步。实现这个机制的协议叫做Zab协议。Zab协议有两种模式,它们分别是恢复模式(选主)和广播模式(同步)。当服务启动或者在领导者崩溃后,Zab就进入了恢复模式,当领导者被选举出来,且大多数Server完成了和leader的状态同步以后,恢复模式就结束了。状态同步保证了leader和Server具有相同的系统状态。
为了保证事务的顺序一致性,zookeeper采用了递增的事务id号(zxid)来标识事务。所有的提议(proposal)都在被提出的时候加上了zxid。实现中zxid是一个64位的数字,它高32位是epoch用来标识leader关系是否改变,每次一个leader被选出来,它都会有一个新的epoch,标识当前属于那个leader的统治时期。低32位用于递增计数。
每个Server在工作过程中有三种状态:
LOOKING:当前Server不知道leader是谁,正在搜寻
LEADING:当前Server即为选举出来的leader
FOLLOWING:leader已经选举出来,当前Server与之同步
3.1选主流程
当leader崩溃或者leader失去大多数的follower,这时候zk进入恢复模式,恢复模式需要重新选举出一个新的leader,让所有的Server都恢复到一个正确的状态。Zk的选举算法有两种:一种是基于basic paxos实现的,另外一种是基于fast paxos算法实现的。系统默认的选举算法为fast paxos。先介绍basic paxos流程:
1 .选举线程由当前Server发起选举的线程担任,其主要功能是对投票结果进行统计,并选出推荐的Server;
2 .选举线程首先向所有Server发起一次询问(包括自己);
3 .选举线程收到回复后,验证是否是自己发起的询问(验证zxid是否一致),然后获取对方的id(myid),并存储到当前询问对象列表中,最后获取对方提议的leader相关信息(id,zxid),并将这些信息存储到当次选举的投票记录表中;
4. 收到所有Server回复以后,就计算出zxid最大的那个Server,并将这个Server相关信息设置成下一次要投票的Server;
5. 线程将当前zxid最大的Server设置为当前Server要推荐的Leader,如果此时获胜的Server获得n/2 + 1的Server票数, 设置当前推荐的leader为获胜的Server,将根据获胜的Server相关信息设置自己的状态,否则,继续这个过程,直到leader被选举出来。
通过流程分析我们可以得出:要使Leader获得多数Server的支持,则Server总数必须是奇数2n+1,且存活的Server的数目不得少于n+1.
每个Server启动后都会重复以上流程。在恢复模式下,如果是刚从崩溃状态恢复的或者刚启动的server还会从磁盘快照中恢复数据和会话信息,zk会记录事务日志并定期进行快照,方便在恢复时进行状态恢复。选主的具体流程图如下所示:
fast paxos流程是在选举过程中,某Server首先向所有Server提议自己要成为leader,当其它Server收到提议以后,解决epoch和zxid的冲突,并接受对方的提议,然后向对方发送接受提议完成的消息,重复这个流程,最后一定能选举出Leader。其流程图如下所示:
3.2同步流程
选完leader以后,zk就进入状态同步过程。
1. leader等待server连接;
2 .Follower连接leader,将最大的zxid发送给leader;
3 .Leader根据follower的zxid确定同步点;
4 .完成同步后通知follower 已经成为uptodate状态;
5 .Follower收到uptodate消息后,又可以重新接受client的请求进行服务了。
流程图如下所示:
3.3工作流程
3.3.1leader工作流程
1 .恢复数据;
2 .维持与Learner的心跳,接收Learner请求并判断Learner的请求消息类型;
3 .Learner的消息类型主要有PING消息、REQUEST消息、ACK消息、REVALIDATE消息,根据不同的消息类型,进行不同的处理。
PING消息是指Learner的心跳信息;REQUEST消息是Follower发送的提议信息,包括写请求及同步请求;ACK消息是Follower的对提议的回复,超过半数的Follower通过,则commit该提议;REVALIDATE消息是用来延长SESSION有效时间。
Leader的工作流程简图如下所示,在实际实现中,流程要比下图复杂得多,启动了三个线程来实现功能。
3.3.2Follower工作流程
1. 向Leader发送请求(PING消息、REQUEST消息、ACK消息、REVALIDATE消息);
2 .接收Leader消息并进行处理;
3 .接收Client的请求,如果为写请求,发送给Leader进行投票;
4 .返回Client结果。
Follower的消息循环处理如下几种来自Leader的消息:
1 .PING消息: 心跳消息;
2 .PROPOSAL消息:Leader发起的提案,要求Follower投票;
3 .COMMIT消息:服务器端最新一次提案的信息;
4 .UPTODATE消息:表明同步完成;
5 .REVALIDATE消息:根据Leader的REVALIDATE结果,关闭待revalidate的session还是允许其接受消息;
6 .SYNC消息:返回SYNC结果到客户端,这个消息最初由客户端发起,用来强制得到最新的更新。
Follower的工作流程简图如下所示,在实际实现中,Follower是通过5个线程来实现功能的。
对于observer的流程不再叙述,observer流程和Follower的唯一不同的地方就是observer不会参加leader发起的投票。
四.主流应用场景
4.1配置管理
Zookeeper很容易实现这种集中式的配置管理,比如将APP1的所有配置配置到/APP1 znode下,APP1所有机器一启动就对/APP1这个节点进行监控(zk.exist("/APP1",true)),并且实现回调方法Watcher,那么在zookeeper上/APP1 znode节点下数据发生变化的时候,每个机器都会收到通知,Watcher方法将会被执行,那么应用再取下数据即可(zk.getData("/APP1",false,null));
以上这个例子只是简单的粗颗粒度配置监控,细颗粒度的数据可以进行分层级监控,这一切都是可以设计和控制的
4.2集群管理
Zookeeper同样很容易实现这个功能,比如我在zookeeper服务器端有一个znode叫/APP1SERVERS,那么集群中每一个机器启动的时候都去这个节点下创建一个EPHEMERAL类型的节点,比如server1创建/APP1SERVERS/SERVER1(可以使用ip,保证不重复),server2创建/APP1SERVERS/SERVER2,然后SERVER1和SERVER2都watch /APP1SERVERS这个父节点,那么也就是这个父节点下数据或者子节点变化都会通知对该节点进行watch的客户端。因为EPHEMERAL类型节点有一个很重要的特性,就是客户端和服务器端连接断掉或者session过期就会使节点消失,那么在某一个机器挂掉或者断链的时候,其对应的节点就会消失,然后集群中所有对/APP1SERVERS进行watch的客户端都会收到通知,然后取得最新列表即可。
另外有一个应用场景就是集群选master,一旦master挂掉能够马上能从slave中选出一个master,实现步骤和前者一样,只是机器在启动的时候在APP1SERVERS创建的节点类型变为EPHEMERAL_SEQUENTIAL类型,这样每个节点会自动被编号
我们默认规定编号最小的为master,所以当我们对/APP1SERVERS节点做监控的时候,得到服务器列表,只要所有集群机器逻辑认为最小编号节点为master,那么master就被选出,而这个master宕机的时候,相应的znode会消失,然后新的服务器列表就被推送到客户端,然后每个节点逻辑认为最小编号节点为master,这样就做到动态master选举。
五.zookeeper的安装
5.1单机版
第一步:安装jdk
第二步:把zookeeper的压缩包上传到linux系统。
第三步:解压缩压缩包
tar -zxvf zookeeper-3.4.6.tar.gz
第四步:进入zookeeper-3.4.6目录,创建data文件夹。
第五步:把zoo_sample.cfg改名为zoo.cfg
[root@localhost conf]# mv zoo_sample.cfg zoo.cfg
第六步:修改data属性:dataDir=/root/zookeeper-3.4.6/data
第七步:启动zookeeper
[root@localhost bin]# ./zkServer.sh start
关闭:[root@localhost bin]# ./zkServer.sh stop
查看状态:[root@localhost bin]# ./zkServer.sh status
注意:需要关闭防火墙。
5.2集群版
第一步:需要安装jdk环境。
第二步:把zookeeper的压缩包上传到服务器。
第三步:解压缩。
第四步:把zookeeper复制三份。
[root@localhost ~]# mkdir /usr/local/solr-cloud
[root@localhost ~]# cp -r zookeeper-3.4.6 /usr/local/solr-cloud/zookeeper01
[root@localhost ~]# cp -r zookeeper-3.4.6 /usr/local/solr-cloud/zookeeper02
[root@localhost ~]# cp -r zookeeper-3.4.6 /usr/local/solr-cloud/zookeeper03
第五步:在每个zookeeper目录下创建一个data目录。
第六步:在data目录下创建一个myid文件,文件名就叫做“myid”。内容就是每个实例的id。例如1、2、3
[root@localhost data]# echo 1 >> myid
[root@localhost data]# ll
total 4
-rw-r--r--. 1 root root 2 Apr 7 18:23 myid
[root@localhost data]# cat myid
1
第七步:修改配置文件。把conf目录下的zoo_sample.cfg文件改名为zoo.cfg
server.1=192.168.25.154:2881:3881
server.2=192.168.25.154:2882:3882
server.3=192.168.25.154:2883:3883
第八步:启动每个zookeeper实例。
启动bin/zkServer.sh start
查看zookeeper的状态:
bin/zkServer.sh status
六.作为dubbo的注册中心
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:dubbo="http://code.alibabatech.com/schema/dubbo"
xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://code.alibabatech.com/schema/dubbo
http://code.alibabatech.com/schema/dubbo/dubbo.xsd
">
<!-- 具体的实现bean -->
<bean id="demoService" class="com.unj.dubbotest.provider.impl.DemoServiceImpl" />
<!-- 提供方应用信息,用于计算依赖关系 -->
<dubbo:application name="xs_provider" />
<!-- 使用multicast广播注册中心暴露服务地址 -->
<!--<dubbo:registry address="multicast://224.5.6.7:1234" /> -->
<!-- 使用zookeeper注册中心暴露服务地址 --即zookeeper的所在服务器ip地址和端口号 -->
<dubbo:registry address="zookeeper://192.168.24.213:2181" />
<!-- 用dubbo协议在20880端口暴露服务 -->
<dubbo:protocol name="dubbo" port="20880" />
<!-- 声明需要暴露的服务接口 -->
<dubbo:service interface="com.unj.dubbotest.provider.DemoService"
ref="demoService" />
</beans>
更多推荐
所有评论(0)