目录

  • 🍋1 引言
  • 🍋2 平台优势
  • 🍋3 丹摩平台服务器配置教程
  • 🍋4 实操案例( MECT4CNER-main)
  • 🍋4.1 MECT4CNER-main模型
  • 🍋4.2 环境配置
  • 🍋4.3 训练模型
  • 🍋4.4 数据保存并导出
  • 🍋5 结语

🍋1 引言

DAMODEL(丹摩智算)是专为 AI 打造的智算云,致力于提供丰富的算力资源与基础设施助力 AI 应用的开发、训练、部署。

在这里插入图片描述

🍋2 平台优势

  • 💡 超友好!

配备 124G 大内存和 100G 大空间系统盘,一键部署,三秒启动,让 AI 开发从未如此简单!

  • 💡 资源多!

从入门级到专业级 GPU 全覆盖,无论初级开发还是高阶应用,你的需求,我们统统 Cover!

  • 💡 性能强!

自建 IDC,全新 GPU,每一位开发者都能体验到顶级的计算性能和专属服务,大平台值得信赖!

  • 💡 超实惠!

超低价格体验优质算力服务,注册即送优惠券!还有各类社区优惠活动,羊毛薅不停!

🍋3 丹摩平台服务器配置教程

进入控制台-GPU云实例,点击「创建实例」可以快速查看目前提供的算力型号和规格,对于经过跑模型的老用户根据自己实际情况进行选择即可,对于我们新用户来说,必须选最好的4090!!!

在这里插入图片描述


在创建GPU云容器页面您可以:

  • 选择计费方式:按量计费、包日、包月
  • 选择合适的配置与主机
  • 选择GPU数量
  • 扩容数据盘
  • 选择镜像
  • 选择密钥对
  • 选择完成后即可付费创建云容器

对此官方还贴心的出了一个注意事项

在这里插入图片描述

🍋4 实操案例( MECT4CNER-main)

根据上次的镜像我们保持不变,具体创建实例可以参考上篇博客丹摩征文活动 | 0基础带你上手经典目标检测模型 Faster-Rcnn

🍋4.1 MECT4CNER-main模型

下面是原文链接,在GitHub仓库,感兴趣的读者可以自行下载
https://github.com/CoderMusou/MECT4CNER
这个模型的出处来自ACL2021年的一篇文章感兴趣的读者也可以自行下载并且阅读
Models and results can be found at our paper in ACL 2021 or arXiv.

下面是数据集目录

在这里插入图片描述

🍋4.2 环境配置

安装完Pycharm之后,我们点击File---》settings

在这里插入图片描述

接下来我们选择第二个

在这里插入图片描述


接下来我们复制访问链接和密码

在这里插入图片描述


这里根据格式填写访问链接


这里填写密码

在这里插入图片描述


这样就是成功连接上了

在这里插入图片描述


接下来我们选择解释器

在这里插入图片描述


接下来我们根据目录找到Python解释器,之后就点击OK就可以了

在这里插入图片描述

接下来我们就需要进行等待上传文件了

在这里插入图片描述

我们需要一些时间进行等待,若上传完毕,可以通过下面的代码找到我们的工程文件夹

在这里插入图片描述

🍋4.3 训练模型

接下来我们需要将需要的一些库都安装好

fitlog==0.3.2
torch==1.5.1+cu101
FastNLP==0.5.0
numpy==1.18.5

安装完毕,我们直接在终端输入

时间关系本文不具体展示训练过程,下面是训练的命令语句,感兴趣的读者或者对命名实体识别感兴趣的读者可以自行训练

Python main.py

接下来就可以复现代码了

🍋4.4 数据保存并导出

代码中存在可以保存日志的相关代码,训练的日志会直接保存到logs文件夹中去

在这里插入图片描述

🍋5 结语

平台优势:

  1. 价格实惠,注册送福利
  2. 界面简洁,不花里胡哨
  3. 售后优质,及时有反馈
  4. 性能强大,4090带你飞

通过 DAMODEL 智算云的便捷服务,我们体验到了一种全新的开发与部署方式——从资源配置、环境搭建、模型训练到结果导出,每一步都得到了高效的支持。这里我们采用经典目标检测模型 Faster-Rcnn进行测试,后续我还将会使用不同的模型进行测试,欢迎关注~

挑战与创造都是很痛苦的,但是很充实。

Logo

尧米是由西云算力与CSDN联合运营的AI算力和模型开源社区品牌,为基于DaModel智算平台的AI应用企业和泛AI开发者提供技术交流与成果转化平台。

更多推荐