linux C语言根据可执行文件名获取进程运行信息
最近项目中需要对程序的运行状态进行监控,于是想到参考top源码来实现。参考博客:https://blog.csdn.net/earbao/article/details/51277087如下示例可根据可执行文件名获得线程数、虚拟内存占用大小、物理内存占用大小、进程PID、CPU占用率和进程启动次数等信息。1.程序源码main.c#include <stdio.h>...
·
最近项目中需要对程序的运行状态进行监控,于是想到参考top源码来实现。
参考博客:https://blog.csdn.net/earbao/article/details/51277087
如下示例可根据可执行文件名获得线程数、虚拟内存占用大小、物理内存占用大小、进程PID、CPU占用率和进程启动次数等信息。
1.程序源码
main.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "proc_info.h"
int main(int argc, char *argv[])
{
PROCESS_INFO table={0};
strcpy(table.proc_name,"test"); //监控的进程名
sys_proc_info_init( &table, 1); //系统监控初始化
while(1)
{
sleep(1);
printf("-----------------------\n");
printf("proc_name = %s\n",table.proc_name);
printf("state = %d\n",table.state);
printf("thread_num = %d\n",table.thread_num);
printf("pid = %d\n",table.pid);
printf("rss = %d\n",table.rss);
printf("vss = %d\n",table.vss);
printf("cpu = %.2lf\n",table.cpu);
printf("reset_times = %d\n\n",table.reset_times);
}
sys_proc_info_uninit();
return 0;
}
proc_info.c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <pthread.h>
#include <ctype.h>
#include <dirent.h>
#include <grp.h>
#include <pwd.h>
#include <sys/types.h>
#include "proc_info.h"
static PROCESS_INFO *g_proc_ptr = NULL;
static int g_proc_num = 0;
/******************* 参数信息 *************************/
static struct proc_info **old_procs, **new_procs;
static int num_old_procs, num_new_procs;
static struct proc_info *free_procs;
static int num_used_procs, num_free_procs;
static int max_procs, delay, iterations, threads;
static struct cpu_info old_cpu, new_cpu;
static pthread_t thread_id; //线程ID
static int running_flag = 0;
/******************* 本地函数声明 *************************/
static struct proc_info *alloc_proc(void);
static void free_proc(struct proc_info *proc);
static void read_procs(void);
static int read_stat(char *filename, struct proc_info *proc);
static void add_proc(int proc_num, struct proc_info *proc);
static int read_cmdline(char *filename, struct proc_info *proc);
static int read_status(char *filename, struct proc_info *proc);
static void update_procs_state(void);
static struct proc_info *find_old_proc(pid_t pid, pid_t tid);
static void free_old_procs(void);
static int (*proc_cmp)(const void *a, const void *b);
static int proc_cpu_cmp(const void *a, const void *b);
static int proc_vss_cmp(const void *a, const void *b);
static int proc_rss_cmp(const void *a, const void *b);
static int proc_thr_cmp(const void *a, const void *b);
static int numcmp(long long a, long long b);
void *sys_info_proc(void *arg) //系统信息处理线程
{
int i;
num_used_procs = 0;
num_free_procs = 0;
max_procs = 0;
delay = 3;
iterations = -1;
proc_cmp = &proc_cpu_cmp;
if (threads && proc_cmp == &proc_thr_cmp)
{
fprintf(stderr, "Sorting by threads per thread makes no sense!\n");
exit(EXIT_FAILURE);
}
free_procs = NULL;
num_new_procs = num_old_procs = 0;
new_procs = old_procs = NULL;
read_procs();
while(running_flag)
{
old_procs = new_procs;
num_old_procs = num_new_procs;
memcpy(&old_cpu, &new_cpu, sizeof(old_cpu));
sleep(delay);
read_procs();
update_procs_state();
free_old_procs();
}
return NULL;
}
int sys_proc_info_init(PROCESS_INFO *process_array, int num) //系统进程信息初始化
{
if(process_array != NULL && num != 0)
{
g_proc_ptr = process_array;
g_proc_num = num;
}
else
{
printf("----sys_proc_info_init param fail!!\n");
return -1;
}
running_flag = 1;
int ret = pthread_create(&thread_id, NULL,sys_info_proc,NULL);
if(ret != 0)
{
printf("----create sys_info_proc pthread fail!!\n");
return -1;
}
return 0;
}
int sys_proc_info_uninit() //系统进程信息资源释放
{
running_flag = 0;
if(thread_id != 0)
{
pthread_join(thread_id, NULL);
}
}
static struct proc_info *alloc_proc(void)
{
struct proc_info *proc;
if (free_procs)
{
proc = free_procs;
free_procs = free_procs->next;
num_free_procs--;
}
else
{
proc = malloc(sizeof(*proc));
if (!proc)
printf("Could not allocate struct process_info.\n");
}
num_used_procs++;
return proc;
}
static void free_proc(struct proc_info *proc)
{
proc->next = free_procs;
free_procs = proc;
num_used_procs--;
num_free_procs++;
}
static void read_procs(void)
{
DIR *proc_dir, *task_dir;
struct dirent *pid_dir, *tid_dir;
char filename[64];
FILE *file;
int proc_num;
struct proc_info *proc;
pid_t pid, tid;
int i;
proc_dir = opendir("/proc");
if (!proc_dir)
printf("Could not open /proc.\n");
new_procs = calloc(INIT_PROCS * (threads ? THREAD_MULT : 1), sizeof(struct proc_info *));
num_new_procs = INIT_PROCS * (threads ? THREAD_MULT : 1);
file = fopen("/proc/stat", "r");
if (!file)
printf("Could not open /proc/stat.\n");
fscanf(file, "cpu %lu %lu %lu %lu %lu %lu %lu", &new_cpu.utime, &new_cpu.ntime, &new_cpu.stime,
&new_cpu.itime, &new_cpu.iowtime, &new_cpu.irqtime, &new_cpu.sirqtime);
fclose(file);
proc_num = 0;
while ((pid_dir = readdir(proc_dir)))
{
if (!isdigit(pid_dir->d_name[0]))
continue;
pid = atoi(pid_dir->d_name);
struct proc_info cur_proc;
if (!threads) {
proc = alloc_proc();
proc->pid = proc->tid = pid;
sprintf(filename, "/proc/%d/stat", pid);
read_stat(filename, proc);
sprintf(filename, "/proc/%d/cmdline", pid);
read_cmdline(filename, proc);
sprintf(filename, "/proc/%d/status", pid);
read_status(filename, proc);
proc->num_threads = 0;
}
else
{
sprintf(filename, "/proc/%d/cmdline", pid);
read_cmdline(filename, &cur_proc);
sprintf(filename, "/proc/%d/status", pid);
read_status(filename, &cur_proc);
proc = NULL;
}
sprintf(filename, "/proc/%d/task", pid);
task_dir = opendir(filename);
if (!task_dir) continue;
while ((tid_dir = readdir(task_dir)))
{
if (!isdigit(tid_dir->d_name[0]))
continue;
if (threads) {
tid = atoi(tid_dir->d_name);
proc = alloc_proc();
proc->pid = pid; proc->tid = tid;
sprintf(filename, "/proc/%d/task/%d/stat", pid, tid);
read_stat(filename, proc);
strcpy(proc->name, cur_proc.name);
proc->uid = cur_proc.uid;
proc->gid = cur_proc.gid;
add_proc(proc_num++, proc);
} else {
proc->num_threads++;
}
}
closedir(task_dir);
if (!threads)
add_proc(proc_num++, proc);
}
for (i = proc_num; i < num_new_procs; i++)
new_procs[i] = NULL;
closedir(proc_dir);
}
static int read_stat(char *filename, struct proc_info *proc)
{
FILE *file;
char buf[MAX_LINE], *open_paren, *close_paren;
int res, idx;
file = fopen(filename, "r");
if (!file) return 1;
fgets(buf, MAX_LINE, file);
fclose(file);
/* Split at first '(' and last ')' to get process name. */
open_paren = strchr(buf, '(');
close_paren = strrchr(buf, ')');
if (!open_paren || !close_paren) return 1;
*open_paren = *close_paren = '\0';
strncpy(proc->tname, open_paren + 1, THREAD_NAME_LEN);
proc->tname[THREAD_NAME_LEN-1] = 0;
/* Scan rest of string. */
sscanf(close_paren + 1, " %c %*d %*d %*d %*d %*d %*d %*d %*d %*d %*d "
"%lu %lu %*d %*d %*d %*d %*d %*d %*d %lu %ld",
&proc->state, &proc->utime, &proc->stime, &proc->vss, &proc->rss);
return 0;
}
static void add_proc(int proc_num, struct proc_info *proc)
{
int i;
if (proc_num >= num_new_procs) {
new_procs = realloc(new_procs, 2 * num_new_procs * sizeof(struct proc_info *));
if (!new_procs)
printf("Could not expand procs array.\n");
for (i = num_new_procs; i < 2 * num_new_procs; i++)
new_procs[i] = NULL;
num_new_procs = 2 * num_new_procs;
}
new_procs[proc_num] = proc;
}
static int read_cmdline(char *filename, struct proc_info *proc)
{
FILE *file;
char line[MAX_LINE];
line[0] = '\0';
file = fopen(filename, "r");
if (!file) return 1;
fgets(line, MAX_LINE, file);
fclose(file);
if (strlen(line) > 0) {
strncpy(proc->name, line, PROC_NAME_LEN);
proc->name[PROC_NAME_LEN-1] = 0;
} else
proc->name[0] = 0;
return 0;
}
static int read_status(char *filename, struct proc_info *proc)
{
FILE *file;
char line[MAX_LINE];
unsigned int uid, gid;
file = fopen(filename, "r");
if (!file) return 1;
while (fgets(line, MAX_LINE, file)) {
sscanf(line, "Uid: %u", &uid);
sscanf(line, "Gid: %u", &gid);
}
fclose(file);
proc->uid = uid; proc->gid = gid;
return 0;
}
static void update_procs_state(void)
{
int i=0,j=0;
struct proc_info *old_proc, *proc;
unsigned long total_delta_time;
struct passwd *user;
struct group *group;
char *user_str, user_buf[20];
char *group_str, group_buf[20];
for (i = 0; i < num_new_procs; i++)
{
if (new_procs[i])
{
old_proc = find_old_proc(new_procs[i]->pid, new_procs[i]->tid);
if (old_proc)
{
new_procs[i]->delta_utime = new_procs[i]->utime - old_proc->utime;
new_procs[i]->delta_stime = new_procs[i]->stime - old_proc->stime;
}
else
{
new_procs[i]->delta_utime = 0;
new_procs[i]->delta_stime = 0;
}
new_procs[i]->delta_time = new_procs[i]->delta_utime + new_procs[i]->delta_stime;
}
}
total_delta_time = (new_cpu.utime + new_cpu.ntime + new_cpu.stime + new_cpu.itime
+ new_cpu.iowtime + new_cpu.irqtime + new_cpu.sirqtime)
- (old_cpu.utime + old_cpu.ntime + old_cpu.stime + old_cpu.itime
+ old_cpu.iowtime + old_cpu.irqtime + old_cpu.sirqtime);
qsort(new_procs, num_new_procs, sizeof(struct proc_info *), proc_cmp);
int *state_table = (int *)malloc(g_proc_num*sizeof(int));
memset(state_table, 0, g_proc_num*sizeof(int));//清空监控程序状态
for (i = 0; i < num_new_procs; i++)
{
proc = new_procs[i];
if (!proc || (max_procs && (i >= max_procs)))
break;
user = getpwuid(proc->uid);
group = getgrgid(proc->gid);
if (user && user->pw_name) {
user_str = user->pw_name;
} else {
snprintf(user_buf, 20, "%d", proc->uid);
user_str = user_buf;
}
if (group && group->gr_name) {
group_str = group->gr_name;
} else {
snprintf(group_buf, 20, "%d", proc->gid);
group_str = group_buf;
}
for(j=0; j<g_proc_num; j++)
{
if( !strcmp((char *)&proc->tname, (char *)&g_proc_ptr[j].proc_name) )
{
g_proc_ptr[j].cpu = proc->delta_time * 100.0 / total_delta_time; //CPU使用率
if(proc->pid != g_proc_ptr[j].pid)
{
g_proc_ptr[j].reset_times++; //程序启动次数
g_proc_ptr[j].pid = proc->pid; //进程ID
}
g_proc_ptr[j].vss = proc->vss / 1024; //虚拟内存
g_proc_ptr[j].rss = proc->rss * getpagesize() / 1024; //物理内存
g_proc_ptr[j].thread_num = proc->num_threads; //线程数
state_table[j] = 1; //进程信息有效
}
}
}
for(j=0; j<g_proc_num; j++)
{
g_proc_ptr[j].state = state_table[j]; //进程状态 0 进程不存在 1进程存在
}
if(NULL != state_table)
{
free(state_table);
state_table = NULL;
}
}
static struct proc_info *find_old_proc(pid_t pid, pid_t tid)
{
int i;
for (i = 0; i < num_old_procs; i++)
if (old_procs[i] && (old_procs[i]->pid == pid) && (old_procs[i]->tid == tid))
return old_procs[i];
return NULL;
}
static void free_old_procs(void)
{
int i;
for (i = 0; i < num_old_procs; i++)
if (old_procs[i])
free_proc(old_procs[i]);
free(old_procs);
}
static int proc_cpu_cmp(const void *a, const void *b)
{
struct proc_info *pa, *pb;
pa = *((struct proc_info **)a); pb = *((struct proc_info **)b);
if (!pa && !pb) return 0;
if (!pa) return 1;
if (!pb) return -1;
return -numcmp(pa->delta_time, pb->delta_time);
}
static int proc_vss_cmp(const void *a, const void *b)
{
struct proc_info *pa, *pb;
pa = *((struct proc_info **)a); pb = *((struct proc_info **)b);
if (!pa && !pb) return 0;
if (!pa) return 1;
if (!pb) return -1;
return -numcmp(pa->vss, pb->vss);
}
static int proc_rss_cmp(const void *a, const void *b)
{
struct proc_info *pa, *pb;
pa = *((struct proc_info **)a); pb = *((struct proc_info **)b);
if (!pa && !pb) return 0;
if (!pa) return 1;
if (!pb) return -1;
return -numcmp(pa->rss, pb->rss);
}
static int proc_thr_cmp(const void *a, const void *b)
{
struct proc_info *pa, *pb;
pa = *((struct proc_info **)a); pb = *((struct proc_info **)b);
if (!pa && !pb) return 0;
if (!pa) return 1;
if (!pb) return -1;
return -numcmp(pa->num_threads, pb->num_threads);
}
static int numcmp(long long a, long long b)
{
if (a < b) return -1;
if (a > b) return 1;
return 0;
}
proc_info.h
/******************************************************************************
*** 文 件 名 : proc_info.h
*** 作 者 : fangye
*** 生成日期 : 2019年3月 星期二
*** 功能描述 : 获取系统进程信息
*******************************************************************************/
#ifndef __PROC_INFO_H__
#define __PROC_INFO_H__
#ifdef __cplusplus
extern "C"{
#endif /* __cplusplus */
#define PROC_NAME_LEN 64
#define THREAD_NAME_LEN 32
#define MAX_LINE 256
#define INIT_PROCS 50
#define THREAD_MULT 8
struct cpu_info {
unsigned long utime, ntime, stime, itime;
unsigned long iowtime, irqtime, sirqtime;
};
struct proc_info {
struct proc_info *next;
pid_t pid;
pid_t tid;
uid_t uid;
gid_t gid;
char name[PROC_NAME_LEN];
char tname[THREAD_NAME_LEN];
char state;
unsigned long utime;
unsigned long stime;
unsigned long delta_utime;
unsigned long delta_stime;
unsigned long delta_time;
long vss;
long rss;
int num_threads;
char policy[32];
};
struct proc_list {
struct proc_info **array;
int size;
};
typedef struct _PROCESS_INFO
{
char proc_name[PROC_NAME_LEN];
int state; //运行状态 0未运行 1运行中
int thread_num; //线程数
int vss; //虚拟内存
int rss; //物理内存
int pid; //进程ID
int reset_times; //启动次数
double cpu; //CPU使用率
}PROCESS_INFO;
extern int sys_proc_info_init(); //系统进程信息初始化
extern int sys_proc_info_uninit(); //系统进程信息资源释放
#ifdef __cplusplus
}
#endif /* __cplusplus */
#endif /* __PROC_INFO_H__ */
2.编译
由于用到了线程,编译需要链接pthread库.。
gcc main.c proc_info.c -o test -lpthread
3.测试结果
更多推荐
已为社区贡献3条内容
所有评论(0)