darknet和yolov3的网络结构初步解释
有关yolov3和darknet的下载,网上有很多,建议在官网上下载,为开源的。在linux命令行输入下列命令:./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg以下为一张图像识别的网络过程layerfilterssizeinputoutpu...
有关yolov3和darknet的下载,网上有很多,建议在官网上下载,为开源的。
在linux命令行输入下列命令:
./darknet detect cfg/yolov3.cfg yolov3.weights data/dog.jpg
以下为一张图像识别的网络过程
layer filters size input output
0 conv 32 3 x 3 / 1 608 x 608 x 3 -> 608 x 608 x 32 0.639 BFLOPs
1 conv 64 3 x 3 / 2 608 x 608 x 32 -> 304 x 304 x 64 3.407 BFLOPs
2 conv 32 1 x 1 / 1 304 x 304 x 64 -> 304 x 304 x 32 0.379 BFLOPs
3 conv 64 3 x 3 / 1 304 x 304 x 32 -> 304 x 304 x 64 3.407 BFLOPs
4 res 1 304 x 304 x 64 -> 304 x 304 x 64
5 conv 128 3 x 3 / 2 304 x 304 x 64 -> 152 x 152 x 128 3.407 BFLOPs
6 conv 64 1 x 1 / 1 152 x 152 x 128 -> 152 x 152 x 64 0.379 BFLOPs
7 conv 128 3 x 3 / 1 152 x 152 x 64 -> 152 x 152 x 128 3.407 BFLOPs
8 res 5 152 x 152 x 128 -> 152 x 152 x 128
9 conv 64 1 x 1 / 1 152 x 152 x 128 -> 152 x 152 x 64 0.379 BFLOPs
10 conv 128 3 x 3 / 1 152 x 152 x 64 -> 152 x 152 x 128 3.407 BFLOPs
11 res 8 152 x 152 x 128 -> 152 x 152 x 128
12 conv 256 3 x 3 / 2 152 x 152 x 128 -> 76 x 76 x 256 3.407 BFLOPs
13 conv 128 1 x 1 / 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BFLOPs
14 conv 256 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BFLOPs
15 res 12 76 x 76 x 256 -> 76 x 76 x 256
16 conv 128 1 x 1 / 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BFLOPs
17 conv 256 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BFLOPs
18 res 15 76 x 76 x 256 -> 76 x 76 x 256
19 conv 128 1 x 1 / 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BFLOPs
20 conv 256 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BFLOPs
21 res 18 76 x 76 x 256 -> 76 x 76 x 256
22 conv 128 1 x 1 / 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BFLOPs
23 conv 256 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BFLOPs
24 res 21 76 x 76 x 256 -> 76 x 76 x 256
25 conv 128 1 x 1 / 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BFLOPs
26 conv 256 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BFLOPs
27 res 24 76 x 76 x 256 -> 76 x 76 x 256
28 conv 128 1 x 1 / 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BFLOPs
29 conv 256 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BFLOPs
30 res 27 76 x 76 x 256 -> 76 x 76 x 256
31 conv 128 1 x 1 / 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BFLOPs
32 conv 256 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BFLOPs
33 res 30 76 x 76 x 256 -> 76 x 76 x 256
34 conv 128 1 x 1 / 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BFLOPs
35 conv 256 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BFLOPs
36 res 33 76 x 76 x 256 -> 76 x 76 x 256
37 conv 512 3 x 3 / 2 76 x 76 x 256 -> 38 x 38 x 512 3.407 BFLOPs
38 conv 256 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BFLOPs
39 conv 512 3 x 3 / 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BFLOPs
40 res 37 38 x 38 x 512 -> 38 x 38 x 512
41 conv 256 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BFLOPs
42 conv 512 3 x 3 / 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BFLOPs
43 res 40 38 x 38 x 512 -> 38 x 38 x 512
44 conv 256 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BFLOPs
45 conv 512 3 x 3 / 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BFLOPs
46 res 43 38 x 38 x 512 -> 38 x 38 x 512
47 conv 256 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BFLOPs
48 conv 512 3 x 3 / 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BFLOPs
49 res 46 38 x 38 x 512 -> 38 x 38 x 512
50 conv 256 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BFLOPs
51 conv 512 3 x 3 / 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BFLOPs
52 res 49 38 x 38 x 512 -> 38 x 38 x 512
53 conv 256 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BFLOPs
54 conv 512 3 x 3 / 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BFLOPs
55 res 52 38 x 38 x 512 -> 38 x 38 x 512
56 conv 256 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BFLOPs
57 conv 512 3 x 3 / 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BFLOPs
58 res 55 38 x 38 x 512 -> 38 x 38 x 512
59 conv 256 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BFLOPs
60 conv 512 3 x 3 / 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BFLOPs
61 res 58 38 x 38 x 512 -> 38 x 38 x 512
62 conv 1024 3 x 3 / 2 38 x 38 x 512 -> 19 x 19 x1024 3.407 BFLOPs
63 conv 512 1 x 1 / 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BFLOPs
64 conv 1024 3 x 3 / 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BFLOPs
65 res 62 19 x 19 x1024 -> 19 x 19 x1024
66 conv 512 1 x 1 / 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BFLOPs
67 conv 1024 3 x 3 / 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BFLOPs
68 res 65 19 x 19 x1024 -> 19 x 19 x1024
69 conv 512 1 x 1 / 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BFLOPs
70 conv 1024 3 x 3 / 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BFLOPs
71 res 68 19 x 19 x1024 -> 19 x 19 x1024
72 conv 512 1 x 1 / 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BFLOPs
73 conv 1024 3 x 3 / 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BFLOPs
74 res 71 19 x 19 x1024 -> 19 x 19 x1024
75 conv 512 1 x 1 / 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BFLOPs
76 conv 1024 3 x 3 / 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BFLOPs
77 conv 512 1 x 1 / 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BFLOPs
78 conv 1024 3 x 3 / 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BFLOPs
79 conv 512 1 x 1 / 1 19 x 19 x1024 -> 19 x 19 x 512 0.379 BFLOPs
80 conv 1024 3 x 3 / 1 19 x 19 x 512 -> 19 x 19 x1024 3.407 BFLOPs
81 conv 255 1 x 1 / 1 19 x 19 x1024 -> 19 x 19 x 255 0.189 BFLOPs
82 yolo
83 route 79
84 conv 256 1 x 1 / 1 19 x 19 x 512 -> 19 x 19 x 256 0.095 BFLOPs
85 upsample 2x 19 x 19 x 256 -> 38 x 38 x 256
86 route 85 61
87 conv 256 1 x 1 / 1 38 x 38 x 768 -> 38 x 38 x 256 0.568 BFLOPs
88 conv 512 3 x 3 / 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BFLOPs
89 conv 256 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BFLOPs
90 conv 512 3 x 3 / 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BFLOPs
91 conv 256 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 256 0.379 BFLOPs
92 conv 512 3 x 3 / 1 38 x 38 x 256 -> 38 x 38 x 512 3.407 BFLOPs
93 conv 255 1 x 1 / 1 38 x 38 x 512 -> 38 x 38 x 255 0.377 BFLOPs
94 yolo
95 route 91
96 conv 128 1 x 1 / 1 38 x 38 x 256 -> 38 x 38 x 128 0.095 BFLOPs
97 upsample 2x 38 x 38 x 128 -> 76 x 76 x 128
98 route 97 36
99 conv 128 1 x 1 / 1 76 x 76 x 384 -> 76 x 76 x 128 0.568 BFLOPs
100 conv 256 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BFLOPs
101 conv 128 1 x 1 / 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BFLOPs
102 conv 256 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BFLOPs
103 conv 128 1 x 1 / 1 76 x 76 x 256 -> 76 x 76 x 128 0.379 BFLOPs
104 conv 256 3 x 3 / 1 76 x 76 x 128 -> 76 x 76 x 256 3.407 BFLOPs
105 conv 255 1 x 1 / 1 76 x 76 x 256 -> 76 x 76 x 255 0.754 BFLOPs
106 yolo
看起来很复杂吧?
真的很复杂。。。
卷积层:
layer filters size input output
0 conv 32 3 x 3 / 1 608 x 608 x 3 -> 608 x 608 x 32 0.639 BFLOPs
输入:像素为608608,通道数为3的的图片
卷积操作:32层卷积核(filters),每个卷积核大小为33,步伐为1(每个卷积窗口逐步进行卷积)。
输出:32个通道的608*608的map
res层
4 res 1 304 x 304 x 64 -> 304 x 304 x 64
输入与输出:输入与输出一般保持一致,并且不进行其他操作,只是求差。
处理操作:res层来源于resnet,为了解决网络的梯度弥散或者梯度爆炸的现象,提出将深层神经网络的逐层训练改为逐阶段训练,将深层神经网络分为若干个子段,每个小段包含比较浅的网络层数,然后用shortcut的连接方式使得每个小段对于残差进行训练,每一个小段学习总差的一部分,最终达到总体较小的loss,同时,很好的控制梯度的传播,避免出现梯度消失或者爆炸等不利于训练的情形。
darknet层
正在努力学习
yolov3层
正在努力学习。。。
更多推荐
所有评论(0)