一、体系结构

 接下来开始整体的介绍I2C,主要参考《Linux设备驱动开发详解》。

1、I2C核心
  I2C核心提供了I2C总线驱动和设备驱动的注册、注销方法,I2C通信方法。
2、I2C总线驱动
  I2C总线驱动是对I2C硬件体系结构中适配器的实现。
  I2C总线驱动主要包含I2C适配器数据结构i2c_adapter、I2C适配器的algorithm数据结构i2c_algorithm和控制I2C适配器产生通信信号的函数。
  经由I2C总线驱动的代码,我们可以控制I2C适配器以主控方式产生开始位、停止位、读写周期,以及以从设备方式被读写、产生ACK等。
3、I2C设备驱动
  I2C设备驱动主要包含数据结构i2c_driver和i2c_client。

二、I2C总线

  代码路径:drivers/I2C/busses/i2c_tegra.c
每个代码架构都有他对应的总线代码,下面介绍i2c_adapter、i2c_algorithm、i2c_msg三个结构体
  定义总线适配器

struct i2c_adapter {
    struct module *owner;
    unsigned int class;       /* classes to allow probing for */
    const struct i2c_algorithm *algo; /* the algorithm to access the bus */
    void *algo_data;

    /* data fields that are valid for all devices   */
    struct rt_mutex bus_lock;

    int timeout;            /* in jiffies */
    int retries;
    struct device dev;      /* the adapter device */

    int nr;
    char name[48];
    struct completion dev_released;

    struct mutex userspace_clients_lock;
    struct list_head userspace_clients;
};

数据传输结构体,决定I2C的通信方式

struct i2c_algorithm {
    int (*master_xfer)(struct i2c_adapter *adap, struct i2c_msg *msgs,
               int num);
    int (*smbus_xfer) (struct i2c_adapter *adap, u16 addr,
               unsigned short flags, char read_write,
               u8 command, int size, union i2c_smbus_data *data);

    /* To determine what the adapter supports */
    u32 (*functionality) (struct i2c_adapter *);
};

数据格式

struct i2c_msg {
    __u16 addr; /* 从地址          */
    __u16 flags;
#define I2C_M_TEN       0x0010  /* this is a ten bit chip address */
#define I2C_M_RD        0x0001  /* read data, from slave to master */
#define I2C_M_NOSTART       0x4000  /* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_REV_DIR_ADDR  0x2000  /* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_IGNORE_NAK    0x1000  /* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_NO_RD_ACK     0x0800  /* if I2C_FUNC_PROTOCOL_MANGLING */
#define I2C_M_RECV_LEN      0x0400  /* length will be first received byte */
    __u16 len;      /* 数据长度             */
    __u8 *buf;      /* 数据指针         */
};

I2C总线的初始化

static int __init tegra_i2c_init_driver(void)
{
    return platform_driver_register(&tegra_i2c_driver);
}
subsys_initcall(tegra_i2c_init_driver);
int platform_driver_register(struct platform_driver *drv)
{
    drv->driver.bus = &platform_bus_type;
    if (drv->probe)
        drv->driver.probe = platform_drv_probe;
    if (drv->remove)
        drv->driver.remove = platform_drv_remove;
    if (drv->shutdown)
        drv->driver.shutdown = platform_drv_shutdown;

    return driver_register(&drv->driver);
}
EXPORT_SYMBOL_GPL(platform_driver_register);

总线会像普通设备那个去注册驱动,并调用probe函数。
tegra_i2c_probe函数用于初始化i2c_adapter和i2c_algorithm结构体

static int tegra_i2c_probe(struct platform_device *pdev)
{
    struct tegra_i2c_dev *i2c_dev;
    struct tegra_i2c_platform_data *pdata = pdev->dev.platform_data;
    struct resource *res;
    struct resource *iomem;
    struct clk *clk;
    struct clk *i2c_clk;
    void *base;
    int irq;
    int ret = 0;

    res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    ……
    res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
    ……
    i2c_dev = kzalloc(sizeof(struct tegra_i2c_dev), GFP_KERNEL);
    if (!i2c_dev) {
        ret = -ENOMEM;
        goto err_i2c_clk_put;
    }

    i2c_dev->base = base;
    i2c_dev->clk = clk;
    i2c_dev->i2c_clk = i2c_clk;
    i2c_dev->iomem = iomem;
    i2c_dev->adapter.algo = &tegra_i2c_algo;
    i2c_dev->irq = irq;
    i2c_dev->cont_id = pdev->id;
    i2c_dev->dev = &pdev->dev;
    i2c_dev->bus_clk_rate = pdata ? pdata->bus_clk_rate : 100000;

    if (pdev->id == 3)
        i2c_dev->is_dvc = 1;
    init_completion(&i2c_dev->msg_complete);

    platform_set_drvdata(pdev, i2c_dev);

    ret = tegra_i2c_init(i2c_dev);
    ……
    i2c_set_adapdata(&i2c_dev->adapter, i2c_dev);
    i2c_dev->adapter.owner = THIS_MODULE;
    i2c_dev->adapter.class = I2C_CLASS_HWMON;
    strlcpy(i2c_dev->adapter.name, "Tegra I2C adapter",
        sizeof(i2c_dev->adapter.name));
    i2c_dev->adapter.algo = &tegra_i2c_algo;
    i2c_dev->adapter.dev.parent = &pdev->dev;
    i2c_dev->adapter.nr = pdev->id;

    ret = i2c_add_numbered_adapter(&i2c_dev->adapter);
    if (ret) {
        dev_err(&pdev->dev, "Failed to add I2C adapter\n");
        goto err_free_irq;
    }

    return 0;
    ……
}

通过i2c_set_adapdata函数设置i2c_adapter;
通过i2c_dev->adapter.algo = &tegra_i2c_algo去指定i2c_algorithm结构体

/*drivers/I2C/busses/i2c-tegra.c*/
static const struct i2c_algorithm tegra_i2c_algo = {
    .master_xfer    = tegra_i2c_xfer,
    .functionality  = tegra_i2c_func,
};

master_xfer定义了数据传输函数。

三、上层调用

上层通过read、write接口函数去调用驱动中对应的函数,在驱动中会定义file_operations 
struct file_operations at24cxx_fops = 
{
    .owner = THIS_MODULE,
    .read = at24cxx_read,
    .write = at24cxx_write,
};

在at24cxx_read函数中会调用i2c_transfer函数,进行数据的读取。

/*drivers/I2C/i2c-core.c*/
int i2c_transfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num)
{
    unsigned long orig_jiffies;
    int ret, try;

    if (adap->algo->master_xfer) {
        if (in_atomic() || irqs_disabled()) {
            ret = i2c_trylock_adapter(adap);
            if (!ret)
                /* I2C activity is ongoing. */
                return -EAGAIN;
        } else {
            i2c_lock_adapter(adap);
        }

        /* Retry automatically on arbitration loss */
        orig_jiffies = jiffies;
        for (ret = 0, try = 0; try <= adap->retries; try++) {
            ret = adap->algo->master_xfer(adap, msgs, num);
            if (ret != -EAGAIN)
                break;
            if (time_after(jiffies, orig_jiffies + adap->timeout))
                break;
        }
        i2c_unlock_adapter(adap);

        return ret;
    } else {
        dev_dbg(&adap->dev, "I2C level transfers not supported\n");
        return -EOPNOTSUPP;
    }
}
EXPORT_SYMBOL(i2c_transfer);

在i2c_transfer函数中调用adap->algo->master_xfer所指定的函数进行数据的传输。即调用总线去传输数据。

I2C设备的整体运行过程如下:
  上层通过read、write函数去调用驱动中对应的接口,然后由接口函数再去调用总线的相关函数,然后实现与设备的通信。

Logo

更多推荐